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ABSTRACT
The opinion expressed in various Web sites and social-media is an
essential contributor to the decision making process of several organi-
zations. Existing sentiment analysis tools aim to extract the polarity
(i.e., positive, negative, neutral) from these opinionated contents.
Despite the advance of the research in the field, sentiment analysis
tools give inconsistent polarities, which is harmful to business de-
cisions. In this paper, we propose SentiQ, an unsupervised Markov
logic Network-based approach that injects the semantic dimension in
the tools through rules. It allows to detect and solve inconsistencies
and then improves the overall accuracy of the tools. Preliminary
experimental results demonstrate the usefulness of SentiQ.

CCS CONCEPTS
• Machine learning → Text labelling; Neural network; Data qual-
ity; • Information systems → First order logic.
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1 INTRODUCTION
With the proliferation of social media, people are increasingly shar-
ing their sentiments and opinions online about products, services,
individuals, and entities, which has spurred a growing interest in sen-
timent analysis tools in various domains [8, 11, 13, 14, 17, 25, 27].
The customer opinion, if yielded correctly, is crucial for the decision-
making of any organization. Thus, numerous studies [3, 13, 16, 23,
24] try to automate sentiment extraction from a massive volume of
data by identifying the polarity of documents, i.e., positive, negative,
or neutral.

Nevertheless, sentiment analysis of social media data is still a
challenging task[10] due to the complexity and variety of natural
language through which the same idea can be expressed and inter-
preted using different text. Many research work have adopted the
consensus that semantically equivalent documents should have the
same polarity [3, 5, 12, 22, 26, 28]. For instance [5] have attrib-
uted the same polarity labels to the semantically equivalent couples
(event/effect) while [12] have augmented their sentiment dataset
using paraphrases and assign the original document’s polarity to the
generated paraphrases.

However, we found that these tools do not detect this similar-
ity and assign different polarity labels to semantically equivalent
documents; hence, considering in-tool inconsistency where the sen-
timent analysis tool attribute different polarities to the semantically
equivalent documents and inter-tool inconsistency where different
sentiment analysis tools attribute different polarities to the same
documents that have a single polarity. This inconsistency can be
translated by the fact that at least one tool has given an incorrect
polarity. Consequently, returning an incorrect polarity in the query
can be misleading, and leads to poor business decision.

Few works have used inconsistencies to improve systems’ ac-
curacy, such as [20], that considers various labeling functions and
minimizes the inter-tool inconsistency between them based on differ-
ent factors: correlation, primary accuracy, and labelling abstinence.
However, in [20], we resolve the inconsistency statistically, and ig-
nore the semantic dimension that could enhance the results’ quality.
The work in [5] has proposed to create a corpus of (event/effect)
pairs for sentiment analysis by minimizing the sentiment distance
between semantically equivalent (event/effect) pairs. In our work,
we study the effect of solving the two types of inconsistency on
accuracy. We focus more on the improvement that we can obtain by
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resolving in-tool inconsistency between the documents i.e., resolv-
ing inconsistency such that all semantically equivalent documents
get the same polarity label and resolving both inconsistencies. To the
best of our knowledge, the only work studying polarity inconsistency
does this at word-level [9], by checking the polarity consistency for
sentiment words inside and across dictionaries.

Our work is the first to study the effect of resolving the polarity
inconsistency on accuracy for in-tool inconsistency, and inter-tool
inconsistency on document data. We seek to converge to the golden
truth by resolving in-tool and inter-tool inconsistencies. Each doc-
ument has a unique polarity, by resolving in-tool and inter-tool
inconsistency, we minimize the gap of incorrect labels and converge
to the gold truth. Such a method can be applied on any classification
task in natural language processing.
Contributions. In summary, we make the following contributions:

• We study the impact of inconsistency on the accuracy of the
sentiment analysis tools.

• We propose SentiQ, an approach that resolves both polarity
inconsistencies: in-tool and inter-tool. The approach we are
proposing is based on our earlier work to handle the incon-
sistency in big data [2] on one side and on the probabilistic
logic framework, Markov Logic Network, on the other side.

• We present preliminary experimental results using news head-
lines datasets [4] and the sentiment treebank dataset [24].
When compared to the majority voting to resolve inter-tool
inconsistencies, our framework leads to the efficiency of us-
ing the semantic dimension in optimizing the accuracy by
resolving both in-tool and inter-tool inconsistencies.

• Following the lessons learned from our experimental eval-
uation, we discuss promising future research directions, in-
cluding the semantic dimension’s use in different integration
problems, such as truth inference in crowd-sourcing and ac-
curacy optimization of different classification problems.

Paper Outline. In the remainder of the paper, we present in section
2 a motivation through a real example. In section 3, we provide some
preliminaries used in our work. In sections 4 and 5, we discuss the
SENTIQ model based on Markov Network logic (MLN) while in
section 6, we present our experiments and discussions.

2 MOTIVATING EXAMPLE
We consider the following real life example collected from twitter
and that represents statements about Trump’s restrictions on Chinese
technology such that 𝐷 = {𝑑1, . . . , 𝑑9} and:

• 𝑑1 : Chinese technological investment is the next target in
Trump’s crackdown.

• 𝑑2 : Chinese technological investment in the US is the next
target in Trump’s crackdown.

• 𝑑3 : China urges end to United States crackdown on Huawei.
• 𝑑4 : China slams United States over unreasonable crackdown

on Huawei.
• 𝑑5 : China urges the US to stop its unjustifiable crackdown

on Huawei.
• 𝑑6 : Trump softens stance on China technology crackdown.
• 𝑑7 : Donald trump softens threat of new curbs on Chinese

investment in American firms.
• 𝑑8 : Trump drops new restrictions on China investment.

𝐴𝑖 Id 𝑃𝑡𝑏 𝑃𝑠𝑤 𝑃𝑣 𝑃ℎ
𝐴1 𝑑1 Neutral Negative Neutral Negative

𝑑2 Negative Negative Neutral Negative
𝐴2 𝑑3 Negative Positive Neutral Negative

𝑑4 Negative Negative Neutral Negative
𝑑5 Negative Negative Neutral Negative

𝐴3 𝑑6 Neutral Positive Neutral Positive
𝑑7 Negative Negative Negative Positive
𝑑8 Negative Positive Neutral Positive
𝑑9 Neutral Negative Neutral Positive

Table 1: Predicted polarity on dataset D by different tools

• 𝑑9 : Donald Trump softens tone on Chinese investments.
We call each element of this dataset 𝐷 a 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 . We notice
that 𝐷 can be clustered on subsets of semantically equivalent doc-
uments. For instance, 𝑑1 and 𝑑2 are semantically equivalent as
they both express the idea that the US is restricting Chinese tech-
nological investments. We denote this set by 𝐴1 and we write:
𝐴1 = {𝑑1, 𝑑2} and 𝐴2 = {𝑑3, 𝑑4, 𝑑5}, which express that the Chi-
nese government demands the US to stop the crackdown on Huawei,
and 𝐴3 = {𝑑6, . . . , 𝑑9} which conveys the idea that Trump reduces
restrictions on Chinese investments. We have: 𝐷 = 𝐴1∪𝐴2∪𝐴3. We
analyse 𝐷 using three sentiment analysis tools: Stanford Sentiment
Treebank [24], Sentiwordnet [1] and Vader [13]. In the rest of this
paper, we refer to the results of these tools using the polarity func-
tions: 𝑃𝑡𝑏 , 𝑃𝑠𝑤 , 𝑃𝑣 ; we use 𝑃ℎ to refer to the ground truth. Table 1
summarizes the results of the analysis.

We know that each document has a single polarity, so each precise
tool should find this polarity, and a difference in prediction results is
a sign that at least one tool is erroneous on this document. We also
know that semantically equivalent documents should have the same
polarity. However, in this real-life example, we observe different
tools attributing different polarities for the same document (e.g.,
only 𝑃𝑡𝑏 attributes the correct polarity to 𝑑3 in 𝐴2), which represent
an inter-tool inconsistency. Also, the same tool attributes different
polarities for semantically equivalent documents (for e.g., 𝑃𝑡𝑏 con-
siders 𝑑6 as Neutral and 𝑑7 as Negative) which represent an in-tool
inconsistency. A trivial method to resolve those inconsistencies is
to use majority voting, inside the cluster of documents, or between
functions. However, when applying the majority voting baseline on
this example, we found that the polarity is 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 in 𝐴2 which
represents the correct polarity of the cluster while we found that the
polarity is 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 in𝐴3, which is not a correct polarity in this case.
Because with simple majority voting, we got only a local vision of
the polarity function, and we ignore its behavior on the rest of the
data.

3 PRELIMINARIES
Definition 3.1. (Sentiment Analysis)

Sentiment Analysis is the process of extracting a polarity 𝜋 ∈
{+,−, 0} from a document 𝑑𝑖 . With + for Positive polarity, − for
Negative polarity and 0 for Neutral polarity. In this paper, we refer
to polarity functions as 𝑃𝑡𝑘 s.t: 𝑃𝑡𝑘 : 𝐷 → 𝜋 . We refer to the set of
all functions as Π s.t Π = {𝑃𝑡1 , . . . , 𝑃𝑡𝑛 }
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Definition 3.2. (Polarity Consistency)

Cluster: cluster is a set of semantically equivalent documents:
for a cluster𝐴𝑙 = {𝑑1, . . . , 𝑑𝑛} we have ∀𝑑𝑖 , 𝑑 𝑗 ∈ 𝐴𝑙 , 𝑑𝑖

𝑠⇐⇒ 𝑑 𝑗 .

Sentiment Quality: we define the polarity consistency of a given
cluster 𝐴𝑖 as the two following rules:
In-tool Consistency means that semantically equivalent documents
should get the same polarity, s.t.:

∀𝑑𝑖 , 𝑑 𝑗 ∈ 𝐴, 𝑃∗ ∈ Π 𝑃∗ (𝑑𝑖 ) = 𝑃∗ (𝑑 𝑗 ) (1)

Inter-tool Consistency means that all polarity functions should give
the same polarity to the same document:

∀𝑑𝑖 ∈ 𝐴, 𝑃𝑡𝑘 , 𝑃𝑡 ′𝑘 ∈ Π 𝑃𝑡𝑘 (𝑑𝑖 ) = 𝑃𝑡 ′𝑘 (𝑑𝑖 ) (2)

Definition 3.3. (Markov Logic Network (MLN))

In this section, We recall Markov logic network (MLN) model [6,
21] which is a general framework for joining logical and Probability.
MLN is defined as a set of weighted first-order logic (FOL) formula
with free variables 𝐿 = {(𝑙1,𝑤1), . . . , (𝑙𝑛,𝑤𝑛)}, with 𝑤𝑖 ∈ 𝐼𝑅 ∪ ∞
and 𝑙𝑖 an FOL constraint. With a set of constants𝐶 = {𝑐1, . . . , 𝑐𝑚}, it
constitutes the Markov network 𝑀𝐿,𝐶 . The 𝑀𝐿,𝐶 contains one node
for each predicate grounding that its value is 1 if the grounding is
true and 0 otherwise. Each formula of 𝐿 is represented by a feature
node that its value is 1 if the formula 𝑙𝑖 grounding is true and 0
otherwise. The syntax of the formulas that we adopted in this paper
is the FOL syntax.
World 𝑥 over a domain 𝐶 is a set of possible grounding of 𝑀𝐿𝑁
constraints over 𝐶.
Hard Constraints are constraints with infinite weight 𝑤𝑖 = ∞. A
world 𝑥 that violates these constraints is impossible.
Soft Constraints are constraints with a finite weight (𝑤𝑖 ∈ 𝐼𝑅) that
can be violated.
World’s Probability is the probability distribution of possible worlds
𝑥 in 𝑀𝐿,𝐶 given by

𝑃𝑟 (𝑋 = 𝑥) = 1
𝑍
𝑒𝑥𝑝 (

∑
𝑖

𝑤𝑖 , 𝑛𝑖 (𝑥))

, where 𝑛𝑖 (𝑥) is the number of the true grounding of 𝐹𝑖 in 𝑥 and 𝑍 is
a normalization factor.
Grounding. We define grounding as the operation of replacing pred-
icate variables by constants from 𝐶.

4 SENTIQ: AN MLN BASED MODEL FOR
INCONSISTENCY

The polarity inconsistency is a complex problem due to the tool and
document natures and the relations between them. This problem
can be solved using semantics to model the relations between tools,
documents, and statistic dimension to optimize both the inconsis-
tency and the accuracy of the system —this why we chose 𝑀𝐿𝑁 to
model the resulted inconsistent system. We present the details of our
semantic model in this section.

4.1 Semantic Model’s Components
Our semantic model is a knowledge-base 𝐾𝐵 =< 𝑅, 𝐹 >, where

(1) 𝑅 is a set of rules (FOL formulas) defining the vocabulary of
our application which consists of concepts (sets of individu-
als) and relations between them.

(2) 𝐹 is a set of facts representing the instances of the concepts
or individuals defined in 𝑅 .

We represent each document by the concept 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 , each po-
larity function in the system by its symbol and the polarity that it at-
tributes to the 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 . For instance, 𝑃𝑡𝑏+(𝑑1) , 𝑃𝑡𝑏0, and 𝑃𝑡𝑏− rep-
resent respectively the polarities (+, 0, -) attributed to the𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑1)
by the polarity function 𝑃𝑡𝑏 . Each 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 is 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,
or𝑁𝑒𝑢𝑡𝑟𝑎𝑙 . This is represented respectively by the concepts 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,
𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, and 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 . We also have the relation 𝑠𝑎𝑚𝑒𝐴𝑠 as a
semantic similarity between documents in the input dataset clusters.
For instance, 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑1, 𝑑2) indicates that the documents𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑1)
and 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑2) are semantically equivalent.

4.2 Rule modeling for inconsistency
We define two types of rules from 𝑅 in our framework, Inference
rules and Inconsistency rules:

Inference rules IR
The inference rules allow deriving the implicit instances. They

model the quality of the polarity at in-tool and inter-tool levels.
They are soft rules that add an uncertainty layer to different polarity
functions based on the inconsistency of tools.
• In-tool consistency rules. This set of rules models the fact that all
the documents of the cluster should have the same polarity. They are
defined as follows (for the sake of clarity we omitted the predicate
𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 (𝑑𝑖 ) in all logical rules) :

𝐼𝑅1 : 𝑠𝑎𝑚𝑒𝐴𝑠 (?𝑑𝑖 , ?𝑑 𝑗 ) ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑗 ) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 )
𝐼𝑅2 : 𝑠𝑎𝑚𝑒𝐴𝑠 (?𝑑𝑖 , ?𝑑 𝑗 ) ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑 𝑗 )

The rule 𝐼𝑅1 denotes that if two documents 𝑑𝑖 and 𝑑 𝑗 are semanti-
cally equivalent (expressed with 𝑠𝑎𝑚𝑒𝐴𝑠 relation), they got the same
polarity, which translates the in-tool consistency defined in equa-
tion 1. The 𝑠𝑎𝑚𝑒𝐴𝑠 relation is transitive, symmetric, and reflexive.
We express the symmetry by duplicating the rule for both documents
of the relation (rules 𝐼𝑅1 and 𝐼𝑅2 instead of only one rule). For in-
stance, when applying the rule 𝐼𝑅1 on the relation 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑1, 𝑑2)
and the instances 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑1) and 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑2), we infer the
new instance 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑2). The instance 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑1) is in-
ferred when applying the rule 𝐼𝑅2. The transitivity is handled in the
instantiating step (algorithm 1) and we ignore the reflexivity of the
relation because it does not infer additional knowledge. Note that
𝐼𝑅1 and 𝐼𝑅2 are examples of rules. The set of rules is presented in
Algorithm 2.
• Inter-tool consistency rules. These rules model the inter-tool
consistency described in equation 2 by assuming that each function
gives the correct polarity to the document. For example, given the
instances 𝑃𝑡𝑏− (𝑑2) the rule 𝐼𝑅 infers 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑2). For each tool
in the system, we create the following rules by replacing 𝑃𝑡𝑘∗ with
the polarity function of the tool.

𝐼𝑅3 :𝑃𝑡𝑘+ (?𝑑𝑖 ) → 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) 𝐼𝑅4 : 𝑃𝑡𝑘− (?𝑑𝑖 ) → 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑𝑖 )
𝐼𝑅5 :𝑃𝑡𝑘0 (?𝑑𝑖 ) → 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑𝑖 )
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Those rules are soft rules that allow us to represent inconsistencies
in the system and attribute a ranking to the rules that we use in the
in-tools uncertainty calculation. The idea behind this modeling is
that if the inter-tool consistency is respected, all tools will attribute
the same polarity to this document; otherwise, the document will
have different polarities (contradicted polarities). To represent this
contradiction, we define, next, inconsistency rules.

Inconsistency rules ICR
They are considered as hard rules that represent the disjunction

between polarities since each document has a unique polarity.

𝐼𝐶𝑅1 : 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) → ¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) ∧ ¬𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑𝑖 )

𝐼𝐶𝑅2 : 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) → ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) ∧ ¬𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑𝑖 )

𝐼𝐶𝑅2 : 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (?𝑑𝑖 ) → ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (?𝑑𝑖 ) ∧ ¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (?𝑑𝑖 )
These rules generate negative instances that create inconsistencies

used in learning inference rules weights.
For instance, consider the following instances 𝑃𝑡𝑏− (𝑑3) and 𝑃𝑠𝑤+ (𝑑3)
from the motivating example. By applying the inter-tool consistency
inference rules, we infer: 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑3) and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3). How-
ever, F appears consistent even it contains polarity inconsistencies.
We get the inconsistency once applying the inconsistency rules. We
get: ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3), ¬𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑3), ¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑3) that repre-
sent an apparent inconsistency in F.

4.3 MLN based model for inconsistency resolution
As depicted in Figure 1, the proposed inconsistency resolution pro-
cess follows four main phases:

• Inference of implicit knowledge: The system infers all im-
plicit knowledge needed for the inconsistencies before apply-
ing the learning procedure of 𝑀𝐿𝑁 .

• Detection of inconsistencies: Having the explicit and implicit
knowledge, we apply the inconsistency rules to discover the
inconsistency.

• Inference of correct polarity: Using the saturated fact set 𝐹
and 𝑅, the system learns first the weights of 𝑀𝑅,𝐹 , and use
them to infer the correct polarities.

• Resolve the in-tool inconsistencies : Since we are in an un-
certain environment, we can still have some in-tool inconsis-
tencies after the previous phase, that we resolve by applying
a weighted majority voting.

The phases will be detailed in the next section.

5 SENTIQ:THE INCONSISTENCY
RESOLUTION

In this section we discuss the reasoning process to solve the incon-
sistencies and improve the accuracy.

5.1 Facts generation
Our data are first saved in a relational database, where each table
represents a concept, and the table content represents the concept’s
domain. For that, instantiating our data follows the steps of Algo-
rithm 1.

Each function and its polarity is represented by a table. The con-
tent of the table is the document ID that got this polarity by the

function. The instantiating process converts the content of the data-
base to logic predicates that we use in our reasoning. The purpose of
this algorithm is to fill in the set 𝐹 with the prior knowledge needed
in the reasoning. Our prior knowledge is the documents, polarities
attributed by the functions to documents, and the semantic similarity
between documents represented by the 𝑆𝑎𝑚𝑒𝐴𝑠 predicate. We note
that we do not consider the ground truth. We adopt an unsupervised
approach because inconsistency resolution is useful when we do not
know the valid prediction from the invalid ones.

Algorithm 1 Instantiating

Input : Database with prior knowledge
Output : F:Set of generated Facts (polarities and same as)

1: procedure INSTANTIATING

2: //Step1: Add all Polarities attributed to documents
3: for each 𝑃𝑡𝑘 ∈ Functions :
4: for each 𝑑𝑖 ∈ 𝑃𝑡+

𝑘
: F.add(𝑃𝑡+

𝑘
(𝑑𝑖 ))

5: for each 𝑑𝑖 ∈ 𝑃𝑡−
𝑘
: F.add(𝑃𝑡−

𝑘
(𝑑𝑖 ))

6: for each 𝑑𝑖 ∈ 𝑃𝑡0
𝑘
: F.add(𝑃𝑡0

𝑘
(𝑑𝑖 ))

7: //Step2: Add sameAs relations
8: clusters = groupeByClusterId(D)
9: for each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ clusters :

10: for𝑖 ∈ {0,. . . , len(cluster)} :
11: for 𝑗 ∈ {i+1 ,. . . , len(cluster)} :
12: if 𝑆𝑎𝑚𝑒𝐴𝑠 (𝑑𝑖 , 𝑑 𝑗 ) ∉ F :
13: F.𝑎𝑑𝑑 (𝑆𝑎𝑚𝑒𝐴𝑠 (𝑑𝑖 , 𝑑 𝑗 ))
14: return 𝐹

5.2 Implicit knowledge inference Algorithm
In 𝑀𝐿𝑁 , the learning is done only on the available knowledge in 𝐹 .
For this, we infer all implicit knowledge in the system before ap-
plying the learning procedure. The inference procedure is presented
in Algorithm 2. This inference phase is crucial for an integrated
learning since most polarity knowledge are implicit. For instance,
consider the two documents 𝑑3 and 𝑑4 from the motivating example.
We have 𝑃𝑠𝑤+ (𝑑3) and 𝑃𝑠𝑤− (𝑑4), by inferring documents polarities
using inter-tool consistency rules 𝐼𝑅3 and 𝐼𝑅4, we get 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3)
and 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑4). When applying the in-tool consistency rules on
the previous concepts and the relation 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑4, 𝑑3) (𝐼𝑅1 and 𝐼𝑅2),
we infer the new polarities 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑3) and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑4).

We ensure that we inferred all implicit knowledge by redoing
the inference until no new knowledge are inferred. Such process is
called inference by saturation.

5.3 Inconsistency inference Algorithm
After inferring all implicit knowledge in the set 𝐹 , we apply the
inconsistency rules 𝐼𝐶𝑅 that allow to explicitly define the incon-
sistencies as it is presented in Algorithm 3. We apply this rules
on a saturated knowledge base because most inconsistencies are
implicit. For instance, if we apply the inconsistency rules directly
after inferring the polarities 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3) and 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑4), we
get ¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑3), and ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3). However, when apply-
ing the in-tool consistency rules on the previous concepts and rela-
tion 𝑠𝑎𝑚𝑒𝐴𝑠 (𝑑4, 𝑑3) (saturation process), we obtain 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑3)
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Algorithm 2 Implicit Knowledge Inference Algorithm

Input : 𝐹 𝑤𝑖𝑡ℎ 𝑝𝑟𝑖𝑜𝑟 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒
Output : 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐹

1: procedure INFERENCE

2: //step1: Infer Polarities by applying
3: //inter-tool consistency rules
4: functions=D.getFunctions( )𝑑𝑖
5: for each𝑃𝑡+

𝑘
(𝑑𝑖 ) ∈ functions :

6: if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
7: for each𝑃𝑡−

𝑘
(𝑑𝑖 ) ∈ functions :

8: if 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
9: for each𝑃𝑡0

𝑘
(𝑑𝑖 ) ∈ functions :

10: if 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ) ∉ 𝐹 : 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ))
11: //step2: Infer Polarities by applying
12: //in-tool consistency rules
13: sameAsRelations = 𝑔𝑒𝑡𝑆𝑎𝑚𝑒𝐴𝑠 (𝐹 )
14: repeat:
15: for each SameAs ∈ 𝑠𝑎𝑚𝑒𝐴𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 :
16: if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∈ 𝐹 ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗 ) ∉ 𝐹 :
17: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗 ))
18: if 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑 𝑗 ) ∈ 𝐹 ∧ 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∉ 𝐹 :
19: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
20: if 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∈ 𝐹 ∧ 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗 ) ∉ 𝐹 :
21: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗 ))
22: if 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑 𝑗 ) ∈ 𝐹 ∧ 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ) ∉ 𝐹 :
23: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
24: if 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ) ∈ 𝐹 ∧ 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗 ) ∉ 𝐹 :
25: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗 ))
26: if 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑 𝑗 ) ∈ 𝐹 ∧ 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ) ∉ 𝐹 :
27: 𝐹 .𝑎𝑑𝑑 (𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ))
28: until: no new inferred instance
29: return: F

and 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑4), and when applying the inconsistency rules on
this instances, we get ¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑3) and ¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑4) which
represents an implicit inconsistency in the fact set 𝐹 . Therefore, ap-
plying the inconsistency rules on 𝐹 after the saturation process is
an important step in our reasoning procedure, because it shows all
inconsistencies even the implicit ones.

5.4 𝑀𝐿𝑁 reasoning to reduce inconsistency
Here we discuss how to reduce the inconsistencies discovered in
the previous phase, by applying the 𝑀𝐿𝑁 approach. The reasoning
process will first learn the rules’ weights of 𝑅 and after will use them
to infer the correct polarities.

Grounding. The grounding algorithm enumerates all possible as-
signments of formulas to its free variables. (the set of possible
worlds). We used the grounding algorithm described in [19] be-
cause it speeds up the inference process. We adopted the closed
world assumption; hence we consider all groundings that are not
present in the Fact set as false.
Learning. To learn the rules’ weights, we use the discriminative
training described in [18]. The training consists of optimizing the
conditional log-likelihood given by:

Figure 1: SentiQ overview

log−𝑃 (𝑌 = 𝑦 |𝑋 = 𝑥) = log𝑍𝑥 −
∑
𝑖

𝑤𝑖𝑛𝑖 (𝑥,𝑦)

where 𝑋 represents priors (saturated inconsistent fact set), Y the set
of queries (in our case: 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑), 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑), 𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑)),
𝑍𝑥 the normalization factor over the set of worlds, and 𝑛𝑖 (𝑥,𝑦) the
number of the correct groundings of the formula 𝑙𝑖 (the inference
rules) in the worlds where 𝑌 holds.

We used in the optimization the Diagonal Newton discriminative
method described in [18] that calculates the 𝐻𝑒𝑠𝑠𝑎𝑖𝑛 of the negative
conditional log-likelihood given by:

𝜕

𝜕𝑤𝑖 𝜕𝑤 𝑗
− 𝑙𝑜𝑔𝑃 (𝑌 = 𝑦 |𝑋 = 𝑥) = 𝐸𝑤 [𝑛𝑖𝑛 𝑗 ] − 𝐸𝑤 [𝑛𝑖 ]𝐸𝑤 [𝑛 𝑗 ]

With 𝐸𝑤 the expectation. We call the inference procedure MC-
SAT to estimate the number of satisfied (correct) formulas (𝑛𝑖 , 𝑛 𝑗 ).

We can see that we consider the rules independently in the learn-
ing process. We calculate the number of each formula’s correct
grounding separately in the world; hence we do not take into consid-
eration the implicit knowledge, which justifies the inference of all
implicit knowledge and inconsistencies before learning.
Inference. The inference in 𝑀𝐿𝑁 [21] contains two steps, ground-
ing step, where we sample all possible worlds based on the priors and
construct a large weighted Sat formula used in satisfiability calcula-
tion, and search step to find the best weight assignment to this Sat
formula. In our work, we used the marginal inference algorithm that
estimates the atoms’ probability and returns the query answer with
a probability score representing the confidence. It uses the MC-Sat
algorithm, which combines satisfiability verification with MCMC by
calling in each step the SampleSat algorithm that is a combination of
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Simulated Annealing and WalkSat. Note that the walkSat algorithm
selects in each iteration an unsatisfiable clause, selects an atom from
the clause, and flip its truth value to satisfy the clause.

5.5 MLN-based Reasoning to Enhance Accuracy
Majority voting could be a solution to the inconsistency problem.
However, this trivial method takes into consideration only the voting
subset (cluster) and ignores information about the voters (polarity
functions) from the other voting subsets (other clusters), which may
hurt the accuracy.

To enhance the quality in terms of accuracy of the inconsistency
issue resolution, the process in SentiQ follows two steps:

Step1. We use 𝑀𝐿𝑁 to model the different inconsistencies and
select the most appropriate polarity of the set (phase 1 to phase 3 of
the process). We illustrate in Figure 1 the global workflow of our
system. As input, we have an unlabeled dataset 𝐷 (1) that we cluster
to group the semantically equivalent documents in clusters. Then, (2)
we extract the polarities from the documents using different polarity
functions (𝑃𝑡𝑏 , 𝑃𝑠𝑤 , 𝑃𝑣). After that, (4) we construct our knowledge
base 𝐾𝐵 by creating first the fact set 𝐹 (Algorithm 1).(5) We infer
all implicit knowledge by applying inference rules (𝐼𝑅) on the Fact
set until saturation( Algorithm 2). Then we apply inconsistency
rules (ICR) to generate different inconsistencies between polarities
(Algorithm 3). (7) We learn the weights of inference rules. (8) The
output of the learning procedure is a set of weighted inference rules
that we apply on theprior knowledge to infer the most appropriate
polarities for documents.

Running the motivating example in this system shows an improve-
ment in both the consistency and accuracy (accuracy of 88% and a
low inconsistency).

Step2. (phase 4 of the process) As we still have inconsistencies
from the previous step, we propose to resolve those remaining in-
consistencies by using weighted majority voting with as weights the
polarities probability, which leads to an accuracy of 100% on the
motivating example.

Algorithm 3 Discover inconsistencies

Input : 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐹
Output : 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐹

1: procedure INCONSISTENCY INFERENCE

2: //step1: get all polarities from the F
3: //and apply inconsistency rules
4: polarities=F.getPolarities()
5: for each 𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ∈ 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 :
6: if 𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 == 𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ) :
7: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
8: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ))
9: if 𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 == 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ) :

10: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
11: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ))
12: if 𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 == 𝐼𝑁𝑒𝑢𝑡𝑟𝑎𝑙 (𝑑𝑖 ) :
13: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑖 ))
14: 𝐹 .𝑎𝑑𝑑 (¬𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑖 ))

Figure 2: Accuracy optimization on stanfod tree-
bank

Figure 3: Accuracy optimization on news headlines

6 EXPERIMENTAL EVALUATION
Tools. In our experiments, we use five representative sentiment anal-
ysis tools, a convolutional neural network with word embedding as
𝑃𝑐𝑛𝑛_𝑡𝑥𝑡 [16], a convolutional neural network with character embed-
ding as 𝑃𝑐ℎ𝑎𝑟_𝑐𝑛𝑛[7] , [13] as 𝑃𝑣 , [1] as 𝑃𝑠𝑤 and [24] as 𝑃𝑡𝑏 . We
chose these tools because of their performance and their association
with different methods’ categories, so they have different behaviors
within inconsistency.
Dataset. We studied the effect of inconsistency resolution on accu-
racy using two publicly available datasets for sentiment analysis:
News headlines dataset [4] and the test data of the sentiment tree-
bank dataset [24] (sst). To consider the in-tool inconsistency, and for
experimental purposes, we augmented the datasets with paraphrases
using a generative adversarial network (GAN) [15].

For each document in the dataset, we generated three paraphrased
documents with the same polarity as the original one. These datasets
allow us to study the effect of resolving in-tool and inter-tool in-
consistency on accuracy. Note that in our future work, we use a
clustering method on the data to create our clusters.

Statistics about the datasets are presented in Table 2

Statistics # elements # Positive # Neutral # Negative
𝑁𝑒𝑤𝑠_ℎ𝑒𝑎𝑑𝑠 1583 891 37 655

𝑆𝑆𝑇 3505 1481 640 1384

Table 2: Statistics on datasets.



SentiQ: A Probabilistic Logic Approach to Enhance
Sentiment Analysis Tool Quality Wisdom ’20, August , 2020, SAN DIEGO, CA

Tools Original Acc 𝑀𝑉𝑖𝑛 − 𝑡𝑜𝑜𝑙
size = 25 100 500 1500 size = 25 100 500 1500

𝑃𝑐ℎ𝑎𝑟_𝑐𝑛𝑛 0.62 0.55 0.50 0.506 0.69 0.59 0.50 0.52
𝑃𝑐𝑛𝑛_𝑡𝑥𝑡 0.5 0.48 0.52 0.505 0.54 0.54 0.57 0.55
𝑃𝑠𝑤 0.34 0.35 0.34 0.33 0.38 0.39 0.35 0.33
𝑃𝑡𝑏 0.38 0.38 0.38 0.40 0.46 0.41 0.42 0.44
𝑃𝑣 0.5 0.35 0.34 0.0.33 0.38 0.39 0.35 0.33

𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑜𝑙 𝑀𝑉 0.5 0.47 0.51 0.506 0.42 0.54 0.52 0.515
𝑆𝑒𝑛𝑡𝑖𝑄 0.76 0.70 0.60 0.56 N/A N/A N/A N/A

Table 3: Accuracy of tools before/after inconsistency resolution. The best performance for each dataset size is marked in bold.

Experiments. To evaluate the efficiency of resolving inconsisten-
cies using SentiQ on the accuracy of the system, we compare it to
the Majority Voting (MV) baseline. We use MV to resolve the in-
tool inconsistency, inter-tool inconsistency, and both inconsistencies;
then, we calculate the accuracy on the dataset after resolving con-
tradictions. The majority voting for in-tool inconsistency resolution
consists of calculating the most repeated polarity in the cluster and
attributes it to all cluster documents :
𝑃𝑡𝑘 (𝐴) = 𝑎𝑟𝑔𝑚𝑎𝑥 {+,0,−}{

∑
𝑑𝑖 ∈𝐴 1(𝑃𝑡𝑘 (𝑑𝑖 )=+) ,

∑
𝑑𝑖 ∈𝐴 1(𝑃𝑡𝑘 (𝑑𝑖 )=0) ,∑

𝑑𝑖 ∈𝐴 1(𝑃𝑡𝑘 (𝑑𝑖 )=−) }. Inter-tool inconsistency resolution using ma-
jority voting consists of attributing to the document the polarity
attributed by most tools:
𝑃∗ (𝑑𝑖 ) = 𝑎𝑟𝑔𝑚𝑎𝑥 {+,0,−}{

∑
𝑃𝑡𝑘 ∈Π 1(𝑃𝑡𝑘 (𝑑𝑖 )=+) ,

∑
𝑃𝑡𝑘 ∈Π 1(𝑃𝑡𝑘 (𝑑𝑖 )=0) ,∑

𝑃𝑡𝑘 ∈Π 1(𝑃𝑡𝑘 (𝑑𝑖 )=−) } . Resolving both inconsistencies with MV
consists of considering in the cluster all polarities given by polar-
ity functions and attributing to each document the most repeated
polarity.
Accuracy Optimization with SentiQ. To evaluate the accuracy im-
provement obtained by SentiQ, we run SentiQ on the two datasets
News headlines and SST. The Figures 2,3 present the accuracy of
resolving inconsistencies using SentiQ on the two datasets SST and
news headlines respectively with the two queries 𝐼𝑠𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑) and
𝐼𝑠𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑) and the polarity functions 𝑃𝑐ℎ𝑎𝑟_𝑐𝑛𝑛 , 𝑃𝑡𝑒𝑥𝑡_𝑐𝑛𝑛 , 𝑃𝑠𝑤
and 𝑃𝑣 .

We observe an accuracy improvement of 0.629 and 0.56 on the
two datasets SST and the news headlines, respectively. These pre-
liminary results prove the efficiency of resolving both in-tool in-
consistency and inter-tool inconsistency using SentiQ to improve
the accuracy. To analyze the performances and limits of SentiQ, we
compare it in the next section to the MV baseline in the presence of
variable-sized datasets.

Accuracy optimization and dataset size. The results are pre-
sented in the Table 3.

We evaluate the accuracy optimization of polarity functions on
samples of different sizes (25, 100, 500 and 1500) from the news
headlines dataset using SentiQ and MV to resolve in-tool incon-
sistencies, inter-tool inconsistencies, and both of them. "Original
Acc" represents the original accuracy of the polarity function on
this dataset, while "MV in-tool" represents the accuracy on different
samples after resolving in-tool inconsistency using MV. "Inter-tool
MV" represents the overall accuracy of the system after solving
inter-tool inconsistencies, and the last line of the table represents the

accuracy obtained after inferring the polarity of the whole system
using our SentiQ.
Results. We observe that resolving in-tool inconsistency increases
the accuracy of tools in most of the cases. The only case where
we have accuracy degradation corresponds to the tool 𝑃𝑣 , where
accuracy changes from 𝑎𝑐𝑐 = 0.5 to 𝑎𝑐𝑐 = 0.38 after resolving
inconsistencies. When analyzing the data of this case, we found that
most of this tool’s predictions where 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 instead of the data
ground truth. As a result, majority voting falsified the results of the
correctly predicted instances.

Resolving inter-tool inconsistency using majority voting decreases
effectiveness in the case of tools that are incompatible in terms of ac-
curacy (i.e., having widely different accuracy scores). Like the case
of the two samples of size=25 and size=100 of the Table 3, where
the weak nature of 𝑃𝑣 , 𝑃𝑠𝑤 , and 𝑃𝑡𝑏 on the datasets has influenced
the performance of the voting system (accuracy decreased from 0.62
to 0.5 on the dataset of size 25 and from 0.55 to 0.47 on the dataset
of size 100). SentiQ addresses this problem, because it weighs differ-
ent tools based on the inconsistencies on the whole dataset. SentiQ
provides an accuracy improvement of 0.76 on the first dataset, 0.70
on the second, and 0.60 on the third dataset, outperforming majority
voting.

This leads to other research problems, especially that of scalabil-
ity, since we could not run experiments with a larger dataset, due to
the high inference complexity of the Markov solver. Therefore, we
need a more efficient Markov logic solver adapted to analyze large
scale social media data.

We also observe that the MLN solver deletes some rules from the
model (by attributing a negative, or a 0 weight), which can penalize
the inference. The final results of the system could be boosted by
adding business rules that can improve the polarity inference. This
approach can be applied to various problems such as truth inference
in crowd-sourcing, and other classification problems. We proved
that resolving both in-tool and inter-tool inconsistency outperforms
using only inter-tool inconsistencies.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we presented an MLN-based approach to solve incon-
sistencies and improve classification accuracy. Our results show the
efficiency of including semantics to resolve in-tool inconsistency.
The initial results of SentiQ are promising and confirm that resolv-
ing in-tool inconsistency boosts accuracy. However, to test SentiQ
efficiency in resolving inconsistencies and improving the accuracy
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of social media data, we need MLN solvers that can scale with the
data size. Finally, we plan to investigate the use of domain expert
rules for improving the polarity inference of SentiQ.
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