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ABSTRACT
This paper investigates topic modeling within a noisy domain. The
goal is to generate topics that maximize topic coherence while
introducing only a small amount of noise. The problem is motivated
by the practical setting of short, noisy tweets, where it is important
to generate topics containing a larger number of content words
than noise words. For the most general version of this problem,
we propose a new method, λ-CLIQ. It is a simple variant of the k-
clique percolation algorithm that employs for quasi-cliques during
graph decomposition and percolation based on λ, a graph property
variant. While the topics generated using our base algorithm are
highly coherent, they are often contain too few words. To increase
topic size, we add a post processing step that augments identified
topic words using locally trained embeddings. We show that both
λ-CLIQ and λ-CLIQ+ outperform the state of the art in terms of
topic coherence on three distinct Twitter data sets.
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1 INTRODUCTION
Since their inception in the early 2000s, topic models have been an
important tool for understanding textual content. Originally, they
were used to construct and analyze topics within longer documents
such as newspaper articles, books, research papers, and journals.
Nearly two decades later, the nature of the documents that we
would like to employ topic models on has drastically changed, but
the nature and underlying assumptions of the topic models have
not. Instead of hundreds of well-edited documents each consisting
of hundreds of words, we have thousands/millions of documents
each consisting of dozens of words.

These short documents are generated on social media sites such
as Twitter and Facebook, where millions of posts are shared every
day. It was estimated that in 2019 over 500 million tweets were
sent per day [12], and over 420 million Facebook status updates
were posted daily [21]. Unfortunately, because these documents
are not long and rich in organized content, current topic models
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have difficulty determining coherent topics. The situation is further
exacerbated when we focus on a specific domain of social media
posts, such as politics, parenting, or sports. Many of the words that
define the domain itself are so prevalent that it makes uncovering
the individual topics very hard. For instance, in a domain regarding
a presidential election, words like ‘election,’ ‘politician,’ and ‘issue’
appear very frequently, but rarely provide additional context to
specific topics. These are examples of flood words or domain specific
noise words [6].

State of the art methods are unable to generate topics with more
content rich words than noise words in social media texts. We be-
lieve that this is due to the small document length, the varying
topic sizes and frequencies, the amount of noise present in such
documents, and the prevalence of generic domain words. As our
empirical evaluation will demonstrate, the distribution of noise at
all word frequencies makes it difficult for probabilistic models to
generate coherent (interpretable) topics. We believe this results
because state of the art generative models tend to add the most fre-
quent domain words to a large number of topics, leading to generic
topics that do not contain sufficient context. In general, probabilis-
tic models tend to perform poorly on Twitter data due to the failure
of the inherent assumption that the distribution of content words
can be approximated by sampling the relative frequencies of words.
Our approach will instead incorporate words and phrases based on
a co-frequency graph containing words and phrases that may only
be moderately frequent.

At a high level, our goal is to generate topics that maximize
topic coherence while introducing only a small amount of noise.
We propose a newmethod, λ-CLIQ , that is a simple variant of the k-
clique percolation algorithm [9] typically used for clustering tasks.
λ-CLIQ decomposes a co-frequency graph until it contains only
small quasi-cliques and then builds (percolates) topics by combining
these quasi-cliques if they have high levels of connectivity. While
the topics generated using our base algorithm are highly coherent,
they often contain too few words and phrases. To increase topic
size, we add a post processing step that augments identified topics
with words using a locally trained embedding space (λ-CLIQ+). We
find that our approach outperforms state of the art models in terms
of topic coherence and noise level on three large, domain specific
Twitter data sets.

The contributions of this paper are as follows: (1) we propose a
new topic modeling algorithm (λ-CLIQ) that uses a co-frequency
graph to identify topics by removing weighted edges until only
quasi-clique subgraphs remain and recombining subgraphs based
on different percolation rules; (2) we propose an extended topic
modeling algorithm (λ-CLIQ+) that incorporates a language model
to improve topic quality; (3) we compare our proposed algorithm
to state of the art methods and show that it has significantly more
coherent topics than other methods; and (4) we make our model and
other models used in our experiments, along with our evaluation
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metrics, available in a Python package intended for further topic
modeling research.

The paper is organized as follows. Section 2 provides a back-
ground of topic models and their varying approaches. Section 3
describes the components of our model, and how they fit together
to produce a topic model. Section 4 shows the results of experiments
comparing our model to baseline models on multiple evaluation
metrics. Finally, we present conclusions in section 5.

2 RELATED LITERATURE
Many topic models have been proposed over the last two decades,
but the majority can be organized into three classes of models -
generative models, dimensionality reduction models, and semantic
graph models.

The first class consists of generative models, which rely on the
key assumption that documents are generated according to a known
distribution of terms. The most prevalent of the generative class is
Latent Dirichelet Allocation (LDA) [3], which inspires the vast ma-
jority of other generative models. LDA finds the parameters of the
topic/term distribution that maximizes the likelihood of documents
in the data set over k topics. Among its direct descendants are
Hierarchical Dirichelet Process (HDP) [28], Dynamic Topic Mod-
els (DTM) [2], Correlated Topic Models (CTM) [14], and Twitter-
LDA [35]. Each of these iterations attempts to leverage the key
assumption in a different manner to improve upon LDA. HDP [28]
removes k from the model’s parameters, and attempts to maximize
the likelihood of the number of topics in the data set, as well as
the likelihood of documents in the data set. DTM [2] attempts to
predict topics in future time periods using topics in the current time
period. Topics over Time [31] attempts to normalize time in order
to perform temporal topic modeling. CTM [14] acknowledges that
there likely exists some correlation between topics, and attempts to
account for that correlation to produce more coherent topics than
LDA. These models have been shown to be successful for data sets
consisting of longer text documents written by a small number of
authors. Twitter-LDA [35] merges all tweets of a user into a single
document in order to get bigger documents, and then runs LDA
on those combined documents. While useful when studying user
level content, our focus is on data streams associated with hashtags
and/or keywords. In that setting, most people only share a small
number of tweets.

A new direction of research looks at incorporating more sophis-
ticated NLP techniques and mixture models into generative models.
Embedding-based Topic Model (ETM) [23] uses word embeddings
to aggregate short texts into long pseudo-texts, and then infers
topics from the pseudo-texts. Yan et al. perform topic modeling on
pairs of terms with high co-occurrence in their model Biterm Top-
ics [32]. Thompson and Mimno employ probabilistic subsampling
in multi-source data sets to avoid source-specific bias in topics [29].
Their approach is aimed at producing a better starting vocabulary
to feed into LDA. An approach called lda2vec attempts to mix LDA
and word embeddings to produce better topics [18]. A more recent
approach uses LDA to get topic embeddings, and uses these em-
beddings along with pre-trained word embeddings to find topics in
short texts [30].

Another type of generative model employs the Dirichlet Multino-
mial Mixture (DMM), which differs from LDA in that it assumes that
each document only has one topic [20]. The DMM has been a key
building block to many topic models that attempt to better model
data sets containing short documents [16, 19, 24, 34]. SATM [24]
assumes that short texts are all part of crumbling longer documents,
and attempts to create these longer documents by aggregating short
texts. SATM then runs LDA on the larger documents to get the
overarching topics, and uses DMM to infer the specific topic of each
of the short texts. GSDMM [34] attempts to cluster documents into
k topics in a round-robin approach, allowing documents to decide
which topic to join by which other documents are most similar to it.
Qiang et al. [22] and Li et al. [16] (GPU-DMM) employ approaches
using word embeddings to cluster short texts into longer pseudo-
texts that are then put through a different generative model. The
former uses LDA as its building block, while the latter uses DMM.

The second static class of topic models is that of dimension-
ality reduction and clustering, focusing on non-negative matrix
factorization (NMF). NMF uses matrix multiplication to reduce the
dimensionality of the document-word matrix, resulting in an ap-
proximation of a topic-word matrix that can be interpreted as a
topic set related to the original documents. Shahnaz et al. demon-
strated NMF’s capabilities as a topic model [27]. Kasiviswanathan
et al. combine NMF with online dictionary learning techniques to
detect emerging topics in a temporal setting [13]. Yan et al. attempt
to detect topics in short texts using NMF in conjunction with a term
correlation matrix, as opposed to a term-document matrix, due to
the sparsity of short text data [33].

The third class of topic models uses a semantic graph to identify
topics. Topic Segmentation (TS) [8], for instance, uses an undirected
term co-occurrence graph and the Louvainmodularity algorithm [4]
to discover topics in a data set. Cataldi et al.’s Emerging Topic De-
tection [5] leverages a directed term correlation graph paired with a
double depth-first search to discover emerging topics in a temporal
topic model on social media data. Churchill et al. use a directed term
correlation graph in their Topic Flow Model (TFM), but augment
it with new metrics and a search algorithm to identify topics as
they emerge and diminish [6]. Unlike the first two static classes,
the graph-based models do not all work on the same underlying as-
sumptions or algorithms. Their performances are far less correlated
than those of the generative and dimensionality reduction classes.

In our evaluation, we will include representative topic models
from each class of models. We will show that while the generative
models are good at identifying meaningful words/n-grams, they do
not put these words/n-grams together into coherent topics. Instead,
they spread them across multiple topics because of the prevalence
of high frequency noise words and high frequency flood words.

3 APPROACH
In this section, we begin by presenting a high level description of
the algorithm. We then go through the details, providing insight
throughout.

The λ-CLIQ algorithm, unlike most state-of-the-art topic models,
does not immediately begin generating topics as it iterates through
documents. Instead, λ-CLIQ attempts to remove noise before gen-
erating topics.
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Figure 1: Topic Percolation Algorithm Methodology

Figure 1 shows the overall methodology. Conceptually, the core
components of the algorithm can be divided into four subparts:

• Preprocessing - Tokenizing the text, where tokens are words
or NGrams (phrases)

• Graph Construction - Creating a weighted co-frequency
graph G containing phrase tokens and word tokens that
co-occur with NGram tokens.

• Graph Decomposition - Decomposing the graph in rounds
based on edge weight in order to find small, well connected
quasi-cliques that can be viewed as topic kernels.

• Subgraph Percolation - Adding back edges between topic
kernels to build up (percolate) larger communities of quasi-
cliques by maintaining λ levels of connectivity among topic
kernels, where λ represents the threshold for a graph prop-
erty or metric.

Because we optimize for topic coherence, our algorithm is very
selective. To increase the coverage of topics, we also propose an
extended version of the algorithm, λ-CLIQ+. It includes a step that
uses a pre-computed domain specific language model to augment
topics by adding words that are probabilistically similar to those in
each topic (Post-processing).

While the overall strategy we propose mirrors that of the k-
clique percolation algorithm, we do not identify full cliques, but
rather well connected subgraphs. This relaxation is important in
sparse domains because there are very few full cliques that occur
regularly.

The high level algorithm is presented in Algorithm 1. The in-
puts are the database (D), a minimum frequency for an n-gram
to appear in the co-frequency graph G (min_f req), the increment
during graph decomposition (τ ), and the minimum threshold for
percolation (λ). The output is the set of topics (T ). The remainder of
this section describes the components of the algorithm and variants
that improve the topic quality.

3.1 Preprocessing
The algorithm begins by preprocessing the data D to extract tokens,
i.e. words and NGrams (line 4). D ′ is the preprocessed, tokenized
data. We then identify the frequent NGrams P (these are typically
phrases) (line 5). They will be a core component of the cofreqency
graph (line 5). Finally, for each pre-processed tweet in D ′, we re-
place relevant word tokens with the corresponding frequent NGram
token to create D ′′ (line 6). In this way, we give priority to NGram
tokens and remove the redundancy of maintaining both the indi-
vidual words and the NGram in a post. For example, suppose two
of the word tokens are cat and dog and that cat_dog is a frequent

Algorithm 1 λ-CLIQ
1: INPUT: D,min_f req, λ, τ
2: OUTPUT: T
3: T = {}

4: D ′ = preprocess(D)
5: P = compute_freq_phrases(D ′,min_f req)
6: D ′′ = replace_words(P )
7: G = construct_cofreq_graph(D ′′)
8: m = 1
9: while |E | > 0 do
10: G = decompose_graph(G,m)
11: t f = remove_topic_fragments(G)
12: T = T ∪ t f
13: m =m + τ
14: end while
15: T = percolate_topics(T, λ)
16: T = remove_small_topics(T ))
17: Return T

NGram. Then the replace_word() method replaces adjacent tokens
cat and dog with the token cat_dog.

3.2 Graph Construction
In noisy environments, we hypothesize that identifying content-
rich topics requires us to identify content-rich phrases, or n-grams
that appear with regularity. We accomplish this by constructing
a graph that contains phrases appearing regularly in the tweet
collection and words that appear regularly with those phrases.

Given a document collection D, we will model it as an edge-
weighted graph. We represent an edge-weighted graph as a pair
(G,w), where G = (V ,E) is a graph and w : E → Z is a weight
function. V is the set of nodes in G, and E is the set of undirected
edges inG . In our graphG , nodes represent phrase or word tokens,
edges exist between two phrase tokens or a phrase token and a
word token that appear in the same document, and w(ei j ), the
weight on edge ei j , is the number of documents containing both
tokens vi and vj . G does not contain edges between word tokens
as their frequency of co-occurrence overwhelms that of the edges
between words and phrases, reducing the importance of phrases
in G. Also, since many words appear together by chance on social
media, focusing on phrases that occur regularly reduces some of
the more ‘random’ connections that may appear if we have edges
between nodes representing words.
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Once we identify phrases P that occur at leastmin_f req times
(line 6), the graph construction (line 7) proceeds as follows. A node
is created for each phrase in P and each unigram in D ′′ that occurs
with one or more phrases in P . Edges are added between phrases
that co-occur and phrases and words that co-occur. The weight of
each edge is the frequency of co-occurrence.

3.3 Graph Decomposition Strategies
Our model attempts to break the chains between content and noise
words that negatively affect the performance of other topic models,
while leaving intact communities of content words. The edges in
our graph are weighted with the co-frequency of their respective
vertices. The basis of our decomposition strategy is to remove edges
in rounds, where all edges of a particular weightm are removed
during a single round. In round one, all the edges of weightm = 1
are removed. Once the edges are removed, new subgraphs may
emerge. Each subgraph or topic fragment (t f ) is considered a topic
kernel, removed from G, and set aside (added to T ) until the per-
colation phase. We continue with new rounds, increasingm by τ
until no edges remain (lines 8 – 14).

Our general strategy is based on the K-Clique Percolation al-
gorithm as described in [9]. The main difference is that we relax
the clique requirement by identifying quasi-cliques (as opposed to
cliques) that disconnect from the giant component during edge re-
moval. Because these types of phrase graphs are sparse, full cliques
are too restrictive a constraint.

3.4 Graph Percolation Strategies
Given our set of topic kernelsT = t f1 . . . t fq , whereq is the number
of topic kernels identified during the graph decomposition phase,
we want to combine related topic kernels into single topics that are
more coherent than the original topic fragments (line 15).

When combining topic kernels, we consider different graph prop-
erties or metrics that are possible indicators of high topic cohesion,
i.e. high subgraph connectivity. One possible example graph prop-
erty is subgraph density. We define λ to be the minimum threshold
required in order to be a reasonably connected subgraph. Multiple
topic kernels can be combined into one topic if the subgraph density
of the union is greater than or equal to the subgraph density of the
larger topic kernel.

A metric that is a better indicator of cohesion is Silhouette score.
Silhouette score is used to determine the quality of a clustering
algorithm. It measures how far apart each cluster is from its closest
neighbor. We can adapt the silhouette score for our model’s coher-
ence metric. We change the silhouette score slightly to account
for our closeness measure, cofrequency. We define P(x ,y) of two
tokens x and y to be the probability that x and y appear in a docu-
ment together. Instead of using minimum average distance, we use
the maximum average co-frequency of a point with the points in
each of the other clusters. So for a token x in topic fragment t fi , let

a(x) =
1

|t fi | − 1

∑
y∈t fi ,x,y

P(x ,y) (1)

To measure the distance to the closest topic, let

b(x) = max
j,i

1
|t fj |

∑
y∈t fj ,x,y

P(x ,y) (2)

Using a(x) and b(x), we can define the silhouette score of token
x to be:

s(x) =
a(x) − b(x)

maxa(x),b(x)
, i f |t fi | > 1, 0 i f |t fi | = 1 (3)

From equation 3.4, we see that the silhouette score is in the range
[−1, 1]. Higher scores indicate well-clustered, coherent topics, while
lower scores indicate poorly clustered topics.

If λ = 0, we remove all topics with negative silhouette scores in
order to keep as much noise out of the merging process as possible.
We use a greedy algorithm to combine topics only if the Silhouette
score of the larger topic would be improved by merging with the
smaller topic.

3.5 Filtering Topics after Percolation
After graph percolation, it is possible for small kernels to persist,
having merged with no neighboring kernels. In order to reduce
noise, and promote a more coherent topic set, kernels of size two
(2-cliques) are removed from the topic set (line 16).

3.6 Optional Post-processing: Augmenting
Topics with Domain Language Model

In order to build larger topics that maintain high coherence, we
train a Word2Vec embedding model [17]. We then use our locally
trained embeddings to add words to each topic after the topics have
been found in the graph. We do so by computing the top n closest
words to each topic word in the embedding space, and adding those
n words to topic ti , only if their addition maintains a graph property
value of at least λ. We refer to this extended algorithm as λ-CLIQ+.

4 EMPIRICAL EVALUATION
In this section, we conduct experiments on three different pre-
labeled, domain-specific Twitter data sets to demonstrate the accu-
racy of our model.

4.1 Experiment Setup
Data Sets. Our first data set, which we refer to as the Political
data set, contains 764,993 tweets about Donald Trump during the
2016 Presidential Election and Transition Period prior to his inau-
guration, recorded between August 2016 and December 2016. 5,000
tweets each day were selected at random during this period from
all of the tweets that mentioned the candidate. Our second data set,
which we refer to as the Parenting data set, contains 953,115 tweets
about parenting collected between March 2016 and September 2017.
The tweets were collected from the accounts of Twitter users identi-
fied as ‘parenting authorities’ by social scientists studying the affect
of social media on parents [26]. The third and final data set, which
we refer to as the Covid, contains 883,990 English tweets from
between January 16th, 2020 and April 1st, 2020. Tweets were col-
lected if they mentioned hashtags associated with the coronavirus
pandemic, including ‘#covid,’ ‘#coronavirus,’ and ‘#covid19.’
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Data Set |D| All Tokens Unique Tokens in D Unique Tokens in D ′′

Political 764,993 14,404,344 931,572 380,793
Parenting 953,115 14,658,377 1,562,491 522,797

Covid 883,990 13,766,991 855,734 791,014

Table 1: Data Set Vocabulary Size Before and after Prepro-
cessing

Baseline Algorithms.We test our model against baseline mod-
els that represent models from each class of topic models, as dis-
cussed in section 2. The models that we test against are Latent
Dirichlet Allocation (LDA) [3], Hierarchical Dirichlet Process (HDP)
[28], Non-Negative Matrix Factorization (NMF) [13], Topic Seg-
mentation (TS) [8], Dirichlet Multinomial Model (DMM) [20], Self-
Aggregated Topic Model (SATM) [24], GPU-DMM [16], and Biterm
Topic Model (BTM) [32]. For LDA, TS, and BTM, we used k=20,
100, and 30 topics, respectively. All other baseline models produced
their best topic sets at k=50. These values were chosen empircally
after testing each model on k-values ranging from 10 to 100. All
other parameters were left at their suggested values. 1. We leave a
more comprehensive sensitivity analysis for future work.

Data Preprocessing. Themanner inwhich data is preprocessed
can impact topic modeling results. Given the noisy nature of Twit-
ter data, we consider this to be as important to the construction of
our model as any of the other steps. We employ the preprocessing
pipeline as defined by Churchill et al. [7], and use the following
preprocessing steps, in the following order: Remove deleted posts,
remove user tags, remove urls, remove punctuation (including hash-
tag symbol), lowercase text, remove stopwords, stemwords, remove
words of length less than three.

Deleted posts, user tags, and urls all contribute to noise while
adding no rich topic content. We remove these prior to removing
punctuation because they are easily identified with punctuation still
intact. We remove stopwords, again to reduce noise, and we stem
words to reduce the size of the vocabulary and get higher average
word frequency. Lemmatization would be a valid replacement for
stemming here; however, we choose stemming due to its more
extreme truncation, which Churchill et al. showed can actually
benefit the performance of topic models on noisy data streams [7].
Finally, we remove short words in order to reduce noise.

The data set statistics are shown in Table 1. |D | represents the
number of tweets. The final two columns show the difference in
vocabulary size before and after preprocessing. The difference in
the starting and ending vocabulary for Covid is signficantly smaller
than those of the Political and Parenting data sets because the
unprocessed Covid data set did not contain URLs.

Constructing the Phrase Model. Once our data set has been
cleaned, we approximate phrases by creating NGrams up to 4-grams
from the remaining clean text. Other more traditional means of
identifying phrases, such as Named Entity Recognition and Noun
Phrase detection, are less attractive options for social media data
because they rely on accurate part-of-speech tagging and well-
formed sentences to produce accurate results. We then replace the
component words of NGram with the respective NGrams within
each document. We identify frequent NGrams using the Natural
1We use the Mallet implementation of LDA

Language Tool Kit (NLTK) [1]. We empirically evaluated our pa-
rameters and determined that setting the minimum frequency of an
NGram to be 256 is reasonable for all of our data sets. The higher
the minimum frequency, the faster the construction of the Phrase
model, but the smaller the vocabulary. Too small a vocabulary is
problematic, so balancing graph construction cost and vocabulary
size is important.

Training the Word Embeddings. In order to find closely re-
lated words for improving topics, we train a Word2Vec model using
CBOW on our data set [17]. A skip-gram model would be an ac-
ceptable substitute for CBOW here. We train our model with 100
features, using the Gensim Python library [25].

Algorithm Parameters. We evaluate two variants of the λ-
CLIQ: using density (λ-CLIQD ) and using Silhouette (λ-CLIQS )
during percolation. We also evaluate λ-CLIQ+. While we conducted
an extensive sensitivity analysis, we present only the parameters
for the best results in the paper. For the Political data set, τ = 1,
and the embedding distance threshold = 0.5. For the Parenting data
set, τ = 50, and the embedding distance threshold = 0.25. For the
Covid data set, τ = 1, and the embedding distance threshold = 0.25.
These parameters remain the same for all three algorithm variants.

4.2 Quantitative Analysis
In this section, we perform a quantitative analysis of our model’s
performance against the baseline models. We consider two metrics,
topic coherence and topic diversity, that together attempt to address
how well models can isolate meaningful topics in the data sets.

Topic Coherence. To measure a model’s ability to capture
meaningful topics, we employ normalized pointwise mutual infor-
mation (NPMI) [15]. NPMI measures how closely related two words
are based on their relative cofrequencies. Along with its variants,
NPMI has been used to evaluate topic coherence in many recent
topic modeling papers [10, 11, 16, 22, 24]. We can sum the pairwise
NPMI scores for all of the tokens in a topic to get that topic’s NPMI
score. Recall, for a pair of tokens (x ,y), we define the probability
of them appearing together in a document as P(x ,y). We can use
these probabilities to compute the NPMI of a topic t ∈ T as follows:

NPMI (t) =

∑
x,y∈t

log( P (x,y)
P (x )P (y) )

− log(P (x,y))( |t |
2
) (4)

NPMI scores are in the range [−1, 1], with negative scores indi-
cating low mutual information between topic tokens, and positive
scores indicating high mutual information. A high NPMI indicates
high topic coherence. A high topic coherence score indicates a
topic model that is capable of placing topic words together in a
meaningful way.

Topic Diversity. To measure how successful topics are at find-
ing unique topics, we use topic diversity. Topic diversity is the
fraction of unique words in the top 20 words of all topics in a topic
set [11]. Low diversity indicates that topics are being flooded with
the same few words, while high diversity indicates that a model is
able to efficiently isolate topics and topic words.

Comparison. Neither topic coherence nor topic diversity are
indicators of a good topic set individually. However, together they
can give a better notion of whether a topic model that is producing



WISDOM’20, August 2020, San Diego, USA Churchill and Singh

Figure 2: Coherence compared with Diversity for each Model on the Covid data set.

Figure 3: Coherence compared with Diversity for each Model on the Parenting data set.

Figure 4: Coherence compared with Diversity for each Model on the Political data set.

good topics. Topic coherence measures the meaningfulness of indi-
vidual topics; however it does not detect the meaningfulness of the
entire topic set. When coupled with topic diversity, which measures
whether or not topics are being repeated or mixed together, topic
coherence becomes useful. A topic model with good coherence and
diversity scores is likely a better model than one with only a high
score in one of the two categories. We present this relationship in
Figures 2, 3, and 4.

Each plot compares the coherence score (y-axis) with the diver-
sity score (x-axis) of each model for the top-x words in each topic.
The number of top words is indicated at the top of each plot (@5, 10,
15, 20). The baseline models are represented by circles, whereas the

variations of our model are represented by triangles. By visualizing
the results in this way, we can easily tell which models produce the
best topics according to coherence and diversity. The best methods
having high coherence and high diversity would be in the top-right
corner of each plot.

The first observation is that λ-CLIQS and λ-CLIQD are closest to
the upper right corner for all data sets across all top word sizes. In
all data sets, we see that λ-CLIQS produces slightly better coherence
than λ-CLIQD . The extended variations have a lower coherence
than their counterparts without embedding augmentation. This is
due to the nature of embedding augmentation. Adding more words
to a topic can result in lower NPMI due to the added words not
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Figure 5: A Topic about the leak of Hillary Clinton’s emails via Wikileaks, captured by each topic model. Bolded words are
highly related to the topic.

having high co-frequencies with all of the original topic words.
This is best visualized in the Political data set results, where the
NPMI of λ-CLIQ+S drops drastically from the@5 to@10 plot. This
indicates that the set of words added by embedding augmentation
contained significant amounts of noise. Recall that the other two
data sets were set to a lower embedding augmentation threshold,
and their NPMI scores do not drop as significantly. For the extended
variants, λ-CLIQ+S still edges out λ-CLIQ+D , with the exception
of the Political data set.

The best baseline model overall is LDA, which has coherence
competitive with the other models, and a much higher diversity
than other baselines with high coherence. In the Covid data set, the
baseline models all have very poor coherence, while our models get
the highest coherence scores for any data set. It’s unclear as to why
the baseline models have such poor performance, but it is possible
that the poor performance stems from the high frequency of generic
words (flood words) about coronavirus. If most people talk about
how coronavirus affects their everyday life, then it is possible that
more generic words, that share little mutual information with all
other words, are found to be the top words by the baseline models.
The proliferation of generic words in the topics would explain
the low NPMI scores. Another reason that Covid could be a more
difficult data set than the other two is its larger vocabulary size,
meaning that cofrequencies will on average be lower.

In the Parenting data set, we see a reasonable comparison be-
tween our models and LDA. The extended variants produce top-
ics with a similar coherence, but lower diversity, while the non-
augmented variations get a much higher coherence and similar
diversity to that of their augmented counterparts.

With the non-augmented variants of our model producing better
coherence scores than our extended variants, a natural question is
why bother with the embedding augmentation at all? We address
this with our qualitative analysis.

4.3 Qualitative Analysis
Similar to clustering, determining which topics are the ‘best’ does
not always map to the ones with the highest quantitative evaluation.
Therefore, we show a qualitative case study comparing a very
popular topic from the Political data set across all models. We chose

a topic from the Political data set specifically because λ-CLIQ+S
gets a poor coherence score in that data set. The topic that we chose
pertains to the scandal surrounding the leak of Hillary Clinton’s
private emails, orchestrated by Russia and published by Wikileaks.

Figure 5 shows this topic as it was captured by each topic model
in our experiments. For the sake of space, we limit each topic to
the top twenty words, although some are shorter. In this figure, the
words most relevant to the topic (as decided by comparing to expert-
labelled topics) are bolded. We can see from a glance that the topic
model with the most relevant words is λ-CLIQ+S . It contains ten
bolded words out of eighteen, indicating that it successfully isolated
a significant number of relevant topic words. From a qualitative
perspective, having email and wikileaks is important for this topic.
Four out of eight of the baseline models have those two words. LDA,
TS, DMM, and GPUDMM all produce reasonable topics, but each
model allows much more noise than λ-CLIQ+S .

A disadvantage of the generative baseline models (LDA, HDP,
DMM, GPUDMM, BTM, SATM) compared to the percolation-based
models is that their statistical nature dissuades the inclusion of
NGrams in the most likely words of a topic. Because the mod-
els hinge on high frequency and high co-occurrence between to-
kens, unigrams are much more likely to have a higher weight than
NGrams, which are much less frequent. In the percolation-based
models, we see far more NGrams in each topic, many of which are
relevant topic words.

Comparing coherence scores. Returning to the question of
why we bother using embedding augmentation, let’s consider the
topic generated by λ-CLIQ+S . In this example, it is clear exactly
which words came from the embedding augmentation, and which
came from the standard model. We can see that while the first
three words in the topic from λ-CLIQS capture important facets
of the topic, the words from the embedding augmentation provide
important context such as hillaryemail, podestaemail, dncleak, and
lewandowski. The ‘words’ containing email are hashtags that were
deconstructed in the preprocessing phase, and give the context of
what was released on Wikileaks. Along with lewandowski, they
also provide the subjects of the scandal, presidential candidate
Clinton and her campaign executives. dncleak provides further
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context about relevant events associated with the scandal during
the campaign period.

When evaluating topic models, quantitative evaluation alone
is not sufficient. Conducting both a qualitative and a quantitative
analysis gives us more insight into the quality of topics generated
by different models. By doing so, we are able to see the value of
adding embedding augmentation to our model.

5 CONCLUSIONS
In this paper we propose a new topic model that is a variant of the k-
clique percolation algorithm used in clustering. Using a cofrequency
graph we identify topics by removing weighted edges until only
quasi-clique subgraphs remain and recombine subgraphs using
different percolation rules. We also propose an extended version
of our model that incorporates a language model to improve the
quality of topics. We show through an extensive empirical analysis
that our model produces more coherent topics than other state of
the art models, while maintaining a high level of topic diversity.
We find that although some state of the art models can produce
very high topic diversity scores, their topic sets are not as coherent
as those produces by our model. We conduct a qualitative analysis
of topics and find that our model is capable of producing coherent
topics that are less noisy than those produced by other topic models.
Finally, we publicly release our model as well as others used in
experiments as a Python package to help advance topic modeling
research on social media data sets such as Twitter.2

While λ-CLIQand λ-CLIQ+can produce coherent topics in social
media data with less noise than other state of the art models, they
can still be improved upon. Integrating online computation of topics
and NGrams would allow this class of models to more easily scale
to larger data sets. Adding a temporal aspect to λ-CLIQ would allow
one to track coherent, low noise topics throughout time, instead
of statically. Both of these innovations are necessary for successful
topic modeling in the fast-evolving landscape of contemporary
social media.
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