
Deep Artificial Intelligence for Fantasy Football 
Multimodal Media Understanding

Aaron Baughman 
 IBM 

 Cary NC, USA 
 baaron@us.ibm.com 

Stephen Hammer        
IBM 

 Atlanta GA, USA  
 hammers@us.ibm.com 

Gray Cannon 
 IBM 

 Miami FL, USA 
 gfcannon@us.ibm.com 

Micah Forster 
 IBM 

 Austin TX, USA 
 mforste@us.ibm.com 

Jeff Powell 
 IBM 

 Atlanta GA, USA 
 jjpowell@us.ibm.com 

Chris Jason                            
Disney ESPN 

 Bristol CT, USA  
 Chris.Jason@disney.com 

Daniel Bohm                            
Disney ESPN 

 Bristol CT, USA  
 Daniel.Bohm@disney.com 

Sai Gudimetla 
 IBM 

 New York NY, USA 
 sgudime@us.ibm.com 

 
ABSTRACT                                                                          
Fantasy sports allow fans to manage a team of their favorite 
athletes. The manager of the team makes decisions of which players 
to roster and trade based on analysis of sports media and statistics. 
The sports media industry rabidly produces content to the tune of 
trillions of bytes of natural language text and multimedia data 
which is not possible for a human to analyze. Our work discusses 
the results of a novel machine learning system (in production from 
2017) which helps manage a fantasy team. The system analyzes  
media content: videos, articles, podcasts for a particular player and 
identifies sentiment, keywords, entities and concepts. The system 
combines the NLP insights with statistics to come up with 4 player 
specific measures: boom (player scoring above a certain threshold), 
bust(player scoring below a certain threshold), play with a hidden 
injury or play meaningful touches. A fairness postprocessor is 
applied to remove the bias in coverage for the particular player or 
team. After that, the system produces a score spread of each player. 
The keywords, entities and concepts are extracted by trained 
statistical entity detectors and document2vector models applied to 
over 100,000 news sources crawled each day. We also use 
probability density functions to produce a score spread of a players 
projected points. The resulting visualizations, projections and 
sentiment analysis were compelling to end users (9.1 million users 
per month in 2019), as each user spent over 90 seconds (throughout 
2019) using the evidence from our novel system.  
 
CCS CONCEPTS 
• Computing methodologies → Artificial 
Intelligence  

KEYWORDS 
Multimedia, Unstructured Text, Machine Learning, Deep 
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1 Introduction 
Fantasy sports owners and managers have hundreds of critical 
questions to answer before selecting their team.  Who will score the 
most points this week?  What player will be a bust or breakout?  
Will any players be a sleeper?  Do any players have injuries that are 
going to impact their play?  When should a player start to counter 
my opponent’s team?  Are there any available trades to upgrade a 
team?  The number of possible moves to make is daunting for both 
the professional and novice player.  
   With over 9.1 million unique fantasy football players per month 
on the ESPN platform alone, the demand for content is insatiable. 
Every day during the 2018 and 2019 seasons, we sustained 2 billion 
edge hits and delivered 250 TB of AI content per day. The large 
volume of users bases the majority of their roster decisions on 
player rankings and simple statistics. However, unstructured and 
multimedia information about sports is the largest data component.  
The volume of natural language, video, and podcast content creates 
fantasy football content overload that is an epidemic among current 
team managers. 
   The overwhelming majority of fantasy sports participants filter 
content based on personal biases such as reading articles, watching 
videos, or listening to podcasts about their favorite team or from 
their preferred outlet.  On average, fantasy players consume 3.9 
sources to base their decisions [22].  Other users rely on ad hoc 
tools such as querying statistics databases, excel sheets, or natural 
language searches [6,22].  The limited amount of information each 
manager can consume has created tremendous knowledge gaps 
when making decisions.   
    Throughout the 2018 and 2019 NFL football seasons, we 
developed a novel system that reads and comprehends natural 
language, videos, and podcasts from over 100,000 sources that 
were deployed to the ESPN Fantasy Football mobile and desktop 
experiences. The semantic relationships between words and topical 
understanding through techniques such as doc2vec enabled deep 
learning classifiers to make decisions about each football player.  
Team managers and coaches now have insight from unstructured 
textual, and multimedia data as to which players will be a bust, 
breakout, play meaningful touches, or play with a hidden injury.  
Statistical data is combined with our system’s comprehension of 
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unstructured information through a deep machine learning pipeline. 
A best-fit score distribution from a set of 24 probability density 
functions (PDF) based on current and historical score projections 
provide an understandable score spread. To answer the question of 
“why”, we presented the top 10 articles, podcasts, and videos that 
support or refute our machine learning pipeline’s player 
assessment. This paper depicts the empirical evaluation of our 
ESPN Fantasy Football Insights with Watson system (FFIW).  

2 Abbreviated Related Works 
Advanced analytics that use structured data such as historical game 
statistics are prevalent and widely used by fantasy sports managers.  
For example, Rotogrinder provides a service that builds starting 
lineups, player projections, Vegas odds, depth charts, and weekly 
weather reports.  Another tool available for fantasy sports players 
is called Dailyfantasynerd. The service highlights favorable 
statistics for players, maintains a lineup optimizer, and displays 
weather data for each venue.  Fantasyfootballanalytics.net exposes 
aggregated play statistics for analysis along with custom point 
projections and player risk assessments. 
    Tools that ingest, consume and utilize a wide range of 
unstructured data such as text and multimedia have had limited 
utility for direct team management. On rotowire.com, fantasy 
sports managers can ask a human expert that has curated both 
structured and unstructured data for advice.  ESPN has an insider 
paid service to access premium content written by featured 
columnists as well as roster advisors. SportsQ has a natural 
language question and answer system to retrieve passages relevant 
to a question. However, none of the prior work distills millions of 
articles, videos, and podcasts every hour into AI insights.       

2.1 Machine Learning in Fantasy Football 
All of the prior work addressing fantasy sports has centered around 
statistics and structured data. We are not aware of any previous 
works that have analyzed multimedia and text information for the 
basis of computational guided fantasy sports play. For example, 
Landers and Duperrouzel present several machine learning 
approaches for predicting points scored by players as well as 
strategies to optimize a team. Other works use statistical predictors 
from sports play to optimize teams [25]. Following the general 
body of work within fantasy sports, Hermann et al. show how 
regression, naïve Bayes, and decision trees can be used to predict 
fantasy basketball performance. Other works analyze predicting or 
projecting players’ values within fantasy sports [12,18,24]. Seal 
addresses any doubt that machine learning with statistics can 
improve fantasy play. We further the state of the art and 
demonstrate how multimedia and natural language processing can 
provide quantitative and qualitative benefits to fantasy football 
experiences. 
 
2.2 Deep Learning for Natural Language 
Processing 

Large-scale text classification has been inspired by the growth of 
natural language text over social media and news outlets.  Work by 
Glorot showed that stacked denoising auto-encoders performed text 
sentiment classification better than Support Vector Machines 
(SVM), Structural Correspondence Learning (SCL), Multi-label 
Consensus Training (MCT), and Spectral Feature Alignment [28].  
Other deep learning works used convolutional neural networks and 
transfer learning by sharing network levels for auxiliary tasks to 
provide Semantic Role Labeling (SRL) [17].   
    Seminal work culminated by Tomas Mikolov in 2013 outlined 
the beginnings of the application of deep learning to natural 
language processing with doc2vec. Billions of words can be added 
to a computing system’s vocabulary, which progresses the 
traditional n-gram language model [27].  Additional work shows 
that distributed word vector representations improve text 
classification over Bag of Words (BoW) and Support Vector 
Machines (SVM) [12].   
    Works began to use doc2vec approaches to expand short text for 
improvements in text classification [13].  Other works enriched 
short text using tf-idf measures before using a doc2vec approach 
for text classification [5].  Text embeddings were combined with 
multimedia convolutions within multitask learning to improve 
model performance [9].  Word2vec approaches are used within 
language translation to emphasize the use of unlabeled data 
between monolingual data [23].  Unlike the previous works, we 
extend doc2vec by summarizing thousands of documents into 
entities, concepts, and keywords before creating average word 
embeddings. 
 
2.3 Deep Learning Fairness 
A lot of work and research has been focused around ethical and fair 
computing. In particular, AI Fairness 360 is an open source Python 
library that has dozens of bias identification and mitigation 
techniques [15]. Within the prior work, bias mitigation can be 
implemented at any stage of a machine learning model such as pre, 
post or inline [15]. In Reubenn Binns’s work, fairness is defined 
from multiple perspectives that influences computing. Other works 
such as Narayana et al. mathematically define fairness. With a 
focus on deep learning, M. Dhu et al. provide a survey around fair 
neural networks. This is particularly important so that we can 
provide fair player states independent of team popularity. 
 
2.4 Text Based Sentiment 
Recently, in the field of Natural Language Processing (NLP), there 
has been an emergence of several transfer learning methods 
[2,4,13]. In transfer learning, data can be leveraged from different 
domains or tasks to be adapted for specific domains. For example, 
in sequential transfer learning, a model is pretrained on a large 
unlabeled text corpus and then adapted to a supervised target task 
using labeled data. Vaswani et al. showed that the transformer 
architecture based on attention mechanisms has a significant 
improvement on a variety of NLP tasks. The work has been further 
improved by applying bidirectional training in Bidirectional 
Encoder Representations from Transformers (BERT). BERT itself 



 
 

 

has been improved upon with a General Pretrained Transformer 
Model on training time and accuracy [27].   
  The transformer model aims to learn word embeddings that 
incorporate both word-level characteristics and contextual 
semantics. A well-trained transformer model on a large corpus can 
be adapted to a variety of tasks by modifying the architecture or 
adapting weights by adding linear layers on top of a pretrained 
model. Our system uses a pretrained language model that has an 
adapted transformer and classification layers for the fantasy 
football domain. The assigned sentiment label to each piece of 
evidence helps users to understand the media buzz around each 
player. 

3 Overall Architecture 
The architecture of the system runs on a hybrid cloud that consists 
of the IBM Public Cloud, ESPN Cloud and Akamai as shown in 
Figure 1. On the IBM Cloud, five core Python applications support  
 
AI insights gathering for fantasy football. Each of the applications 
is deployed as a container-based Cloud Foundry application. 
Manifest files describe each application that can be deployed with 
several cloud foundry directives. Each of the applications was 
targeted and deployed to 3 different sites to maintain continuous 
availability of services. Monitors were placed on each application 
during production work loads. RESTful endpoints were called by 
availability monitors that ran within different geographies, look for 
HTTP 200 codes. If an error code was retrieved, the monitors send 
messages to IBM Alerting services through webhooks. Policies 
within IBM Alerting determine when, who, and how to contact 
operational support. With millions of users each day, the 

monitoring provided an alert system that resulted in no outages 
during the 2019 season. 
  The AI work was written in Python and distributed across several 
IBM Cloud and external services. The following list of applications 
support the machine learning pipeline depicted in Figure 2. 
• Natural Language Container (NLC) (Python) = The NLC 

application wraps the machine learning pipeline around a 
scheduler. Several Swagger API are exposed to accept real-
time player run requests.  

• Text Container (Python) = Crawls specific sources to find text 
articles about each player, enrolls the source into Watson 
Discovery (WD) and saves state to a DB2 database. 

• Multi-Media Container (Python) = Searches sites for videos 
and podcasts about each player. The media is transcribed with 
speech to text services and saved into WD for consumption by 
the Natural Language Container. 

• Projection Crawler (Python) = The crawler finds any players 
that have changes in state such as score projections and injury 
status. Requests are sent to NLC to process these players. 

• Sentiment App (Python) = Runs in Red Hat OpenShift to 
determine the player buzz surrounding articles, videos and 
podcasts. 

• Content Generation Container (Node.js) = Receives messages 
through Swagger API’s to pull finished AI insights about each 
player from DB2 for publication to Cloud Object Storage. 

• Social Sharing Generation (Node.js) = The application 
generates HTML index files for each player link to images 
stored on the Content Delivery Network (CDN). The files can 
be shared on  Facebook and Twitter. 



  
 

 
 

• Social Image Generation (Node.js) = Creates snapshots of 
player images that are uploaded to the CDN and linked by 
sharable HTML files.  
 

   The core machine learning pipeline is written with the Keras and 
TensorFlow libraries. Each model is built and evaluated offline. 
The training of each model within the machine learning pipeline 
takes 6 days of continuous computing. The deep learning offline 
training uses a total of 93,136 exemplars with 3-fold cross 
validation over 3 seasons. The score projection phase uses 15,969 
exemplars to train an ensemble of models based on player position 
that predict score projections. All of the training data was derived 
from a third-party provider, Webhose, that ran historical queries 
against an archive of the Internet. In total, they provided 100 GB of 
historical text information while ESPN enabled access to historical 
player statistics. Tools such as SPSS and Python libraries such as 
pandas and NumPy were used to analyze offline data. 
   To ensure that player boom and bust models were fair across all 
teams irrespective of popularity, the AI Fairness 360 library was 
implemented within as a pipeline post processor. The Calibrated 
Equal Odds Postprocessing Python class was trained and tested 
with 1,550 exemplars. The offline machine learning training used 

an equal distribution of favorable and unfavorable labels based on 
team membership.  
   During runtime, player queries were federated to IBM Watson 
Discovery that is a machine reading engine for over 100,000 
sources, Twitter, ESPN statistics and Rotowire for injury data. 
Features are extracted from the responses of each query and input 
into the appropriate phases of the machine learning pipeline as 
discussed in Section 4. The entire system was multithreaded with 
20 threads and joined at each dependent machine learning phase to 
increase live player throughput. When the initial machine learning 
pipeline is loaded, the process downloads all models to disk from 
Cloud Object Storage (COS). 

   The data produced by the system is stored within a highly 
available DB2 data warehouse. Trained models and artifacts are 
placed within COS while system configurations are uploaded into 
a Cloudant database. The Content Generation Container pulls data 
from DB2 and generates JSON files that are also stored within 
COS, which acts as the origin for the two Content Delivery 
Networks (CDN). To handle the billions of requests for our AI 
insights, an ESPN CDN fronted the IBM Cloud CDN. If the time 
to live (TTL) for data expired or if data was updated, client requests 
populated down to the COS origin to pull and cache the data within 
both CDNs for follow-on requests. Only 0.06% of traffic reached 
our origin server. 

4 Machine Learning Pipeline 
The machine learning pipeline is comprised of natural language 
understanding of media sources, deep learning networks, debias 
algorithms and player performance spreads. The deep learning 
models  produce player states such as performance boom, play 
bust), play with a hidden injury or play meaningful touches. The 
debiasing algorithms include a fairness post processor to account 
for bias in the media coverage surrounding a player or team. We 

then produce score spreads for a player projection by finding the 
best fit probability density function. Through sampling over the 
PDF, we approximate a mean player performance. The 
implementation of the machine learning pipeline is supported by  
five applications, dozens of models, several data sources, and many 
data science environments. Figure 2 depicts the overall data flow 
within our system. Natural Language Understanding of Sports data 
First, the system had to be taught to read fantasy football content. 
A novel language model was designed with custom entities and 
relationships to fit the unique language people use to describe 
players and teams in the fantasy football domain. Next, an 
annotation tool called Watson Knowledge Studio was used by 3 
human annotators to label text within articles as any combination 

Figure 2: Machine Learning Architecture 



 
 

 

of 13 entity types such as player, team, performance, etc. With this 
data, a statistical entity detector was trained and deployed to our 
system called Watson Discovery (WD) that continually ingests 
sources from over 100,000 sources.  Podcasts and videos are 
transcribed and ingested into WD. The WD system is able to 
discover fantasy football entities, keywords, and concepts from the 
continually updating corpora based on our trained statistical entity 
model.   
    Next, the system used a document to vector model to understand 
the natural text from a query.  A very specific query was initially 
issued to WD such as “Tom Brady and Patriots and NFL and 
Football.”  If a query did not return at least an experimentally 
determined 50 documents, the query was broadened until it only 
had “Tom Brady and NFL.”  From the query result, a list of entities, 
keywords and concepts for each document was converted to 
numerical feature vectors. Each of the feature vector groups was 
averaged together to represent a semantic summarization.  All of 
the feature vector groups from each document were averaged 
across all documents.  The 3 keyword, concept and entity averaged 
feature vectors, along with player biographic data were input into 
the deep learning portion of the pipeline. 
 
Deep learning 
    The deep learning pipeline phase had 4 models that were over 98 
layers deep.  The models were classifiers for each player to 
determine the probability of a boom, bust, play with a hidden injury 
or play meaningful minutes.  The probability scores provide a 
confidence level of player states so that team owners can decide 
their own risk tolerance.  
 
Fairness    
  At the end of the of the deep learning phase, a fair post processor 
ensured equal equity across players on different teams. For 
example, players on popular teams such the Rams would unfairly 
have more players predicted to boom and less to bust based on the 
conversation of the crowd. As a result, each of the players were 
split into privileged and unprivileged groups. The output of boom 
and bust probabilities was slighted changed based on team 
membership. 
 
Spread  
   Finally, the outputs of the deep learning layers, along with 
structured ESPN data were input into an ensemble of multiple 
regression models.  This merging of natural language evidence with 
traditional statistics produced a score projection for every player.  
On average, the combination of structured and unstructured data 
produced a better RMSE than each independently.  Finally, 24 
PDF’s were fit to the score projection and historical score trends to 
produce a player score distribution.  While defining and refining 
these techniques, our team conducted data exploration in Jupyter 
notebooks and SPSS.  Through experimentation, we selected model 
hyperparameters and algorithms.  

4.1    Fantasy Football Training Data 

Throughout the project, we used historical news articles, blogs, etc. 
associated with players from the fantasy football seasons 2015, 
2016, and 2017.  A third party named Webhose provided the large-
scale content.  In total, over 100 GB of data was ingested into WD 
using our custom entity model.  We correlated the article date with 
structured player data from ESPN to generate labeled data.  The 
ESPN player data contained several statistics that included week 
result, projection, actual, percentage owned, etc.   
   A week span date from Tuesday to the following Monday was 
associated with each player state so that a time ranged query could 
be run to retrieve relevant news articles.  Equations 1-3 depict the 
determination of a boom label.  If the actual score of a player was 
greater than 1 standard deviation above the projection for a player 
𝑝 at a specific position, the weighted average of the differences 
between the actual and projected score by the percentage owned, 
𝑝𝑒𝑟𝑜𝑤𝑛𝑒𝑑!

".$, is used to determine a boom standard deviation.  
However, the player must be owned by at least 10% in all leagues. 
𝜇!" =

#
$
∑ (&'()&*!+,-"./'(/0!)

,/-"23/0!".$
$
,45 ; 𝑎𝑐𝑡𝑢𝑎𝑙, > +𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, + 𝜎,4      (1) 

𝜎!"# = $
%
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-0."3401!".$
− 𝜇!"'

#
; 𝑎𝑐𝑡𝑢𝑎𝑙- > /𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑- + 𝜎-7%

-56        (2) 

The standard deviation for boom, 𝜎%&, is determined by taking the 
square root of the boom variance, 𝜎!"# . 
The label boom is applied to the player if their actual score,	𝑥, is 
greater than 1 boom standard deviation above the boom mean for 
the player.   

𝑏𝑜𝑜𝑚(𝑥) = 0$:()*78+,78":(-*78+,78
1                            (3) 

The bust label is calculated by equations 4-6.  The average bust 
score, 𝜇%. , is determined by weighting the difference between 
score actuals and projection by the same player’s projection.  
However, only actuals that are 1 standard deviation, 𝜎𝑝, below the 
projected scores are used within the sample set.  

𝜇%. =
$
0
∑ (234.2596!7&89349:9)

!7&8934<&=9
0
!>" ∗ 5𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑!; 𝑎𝑐𝑡𝑢𝑎𝑙! <

>𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑! − 𝜎!@                                                   (4)                          
𝜎!)6 = #

$
∑ 56(&'()&*!+,-"./'(/0!)

,-"./'(7"3!
∗ 8𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑,9 − 𝜇!); ; 𝑎𝑐𝑡𝑢𝑎𝑙, <$

,45

+𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, − 𝜎,4                                                                                 (5) 
The square root of the bust variance, 𝜎%.? , provides the standard 
deviation threshold to label a player with score 𝑥. 

𝑏𝑢𝑠𝑡(𝑥) = 0$:()*7:+,78":(-*7:+,78
1                   (6) 

    The play with injury label was generated only for players that 
scored greater than 15% of their projected points and they were on 
the Rotowire injury report as questionable or probable.  The play 
meaningful minutes label was created when a player scored greater 
than 15% of their projected points and was probable or not on the 
Rotowire injury report.  Each of the four labels was generated for 
every week of every player within the fantasy football 2015 and 
2016 seasons with a subset from the 2017 season.  

4.2 Statistical Entity Detection 
The system had to learn how to read fantasy football documents, 
blogs, and news articles and listen to videos and podcasts.  In order 
to read text and transcripts for comprehension, an ontology of 13 



  
 

 
 

entity types were defined that covered player-centric 
understanding.  The entities include body part, coach, fans, gear, 
injury, location, player, player status, treatment, positive tone, 
negative tone, team and performance metric.  1,200 documents 
created a representative distribution of entities that were 
comparable to the 5,568,714 training and test document set. 
    A team of 3 human annotators used a tool called Watson 
Knowledge Studio to annotate text as 1 of 13 entity types. The 
documents were pre-annotated from 10 dictionaries that searched 
for words and automatically created an initial annotation.  The 
annotators corrected pre-annotations while adding others that were 
missed.  Each day, the team met to discuss their kappa statistic or 
agreement score between each other over all entity types.  Over a 
span of 3 weeks, the team produced a statistical entity model with 
a precision of 79%, recall of 73% and an F1 score of 76%.  Even 
with a 14% entity word density over all documents, the overall 
annotator agreement score was at 70% with the majority of 
differences being the omission of a few words in a phrase.  

4.3 Document2Vector 
For each queried document, a summarization of keywords, 
concepts and entities from the document is unioned into feature 
vector 𝑠< as shown in Equation 7. A doc2vec model was trained on 
50 documents for each day of the top 300 players from each of the 
previous Fantasy Football seasons. In total, the training set included 
94 GB of text. A second precise oriented doc2vec model was 
trained on 10 football dictionaries.  In total, both models learned 
millions of vocabulary words during the training stage.  The feature 
vector is input into both of the broad word embedding model and 
narrow encyclopedia model for a spatial word embedding 
summarization of the document.  As shown in Equation 8, the full 
meaning around a player was the average spatial representation of 
all the documents for a particular player from the encyclopedia 
embedding, 𝑤9, and the broad embedding, 𝑤%. 

𝑠@B =	𝑘:DDD ∪ 𝑐:DDD ∪ 𝑒:DDD                                    (7) 
𝑎!DDD = 	

$
0
∑ 𝑤90
5>" (𝑠5) ∪ 𝑤%(𝑠5)                        (8) 

4.4 Deep Player Classification 
Every player was probabilistically classified as a weekly boom, 
bust, play with hidden injury, or play meaningful touches.  Each 
player state used an identical neural network topology but different 
weights.  The topology includes 98 layers where 6 sequential paths 
are merged into a series of densely connected neurons.  Every 
parallel sequence leveraged a dropout layer at the beginning to 
prevent overfitting the gradients.  With the large number of layers, 
batch normalization was used in each parallel path to speed up 
training. 
   Through experimentation, the play with hidden injury and bust 
classifiers used the tanh activation function from Equation 9 while 
the play meaningful touches and breakout classifiers implemented 
the reLu activation function from Equation 10.  The last layer uses 
a sigmoid activation function shown in Equation 11 to scale the 
output between 0 and 1.  The networks used stochastic gradient 
decent to minimize the binary cross entropy.  For each of the 

measurable player states such as boom and bust, a deep neural 
network has been designed and trained, 𝑑𝑛𝑛A4249 .  Equation 12 
shows the union of feature vectors average word embedding, 𝑎!DDD, 
player bio vector, 𝑏!DDD, and the social sentiment measures of a player, 
𝑠!B , discussed in section 3.6, are fed forward into each deep neural 
network for a probabilistic measurement. 

                                    𝑎42=B(𝑧) = 	
$69;<(	>)

$+9;<(>)
                                       (9) 

 𝑎795.(𝑧) = 	𝑙𝑜𝑔(1 + 𝑒()                         (10) 
𝑎A<CD&<:(𝑧) = 	

9>

9>+$
                           (11) 

            𝑑𝑛𝑛8(&(/(𝑎,??? ∪ 𝑏,??? ∪ 𝑠,C ) = 	 𝑙9: 5𝑙9; 6𝑙… F𝑙5+𝑎,??? ∪ 𝑏,??? ∪ 𝑠,C 4G9; (12)  

  The inputs into the neural network include the player biographic, 
word 2 vector outputs, and social sentiment of each entity type in 
the document set.  The output of each neural network learned the 
relationships between the input vectors.   

4.5 Sentiment Analysis 
Each of the pieces of player focused evidence within text form were 
labeled as positive, neutral or negative. However, labeling fantasy 
football text is challenging because: 
• Sports articles typically talk about multiple players 
• Player position impacts text meaning. For example, 

touchdown is good for a wide receiver but usually bad for a 
defense 

• Agreement between human annotators is low in articles that 
are neutral. 

   Our system used a transformer model with a linear classification 
layer to classify the article sentiment. The sentiment model was 
trained using a pretrained transformer model based on OpenAI's 
Generative Pretrained Transformer Model-2 architecture (GPTM), 
which was trained on Wikitext-103 data [8].  We fine-tuned the 
model with our own labeled data by training the linear classifier 
within the GPTM model and altering hyperparameters.  
   Our training corpus included 900 sports articles that were labeled 
for players spanning different positions such as quarterback, kicker, 
tight end, running back, wide receiver, and defense. A corpus of 
domain specific words such as “pick-six” were added to the training 
data. During model training and apply, the system isolated the 
article text to the window of the player mentions. Articles where 
the player was only mentioned only once were excluded to increase 
the probability that the article was focused around a specific player. 
Individual players and specific teams can become associated with 
positive or negative sentiment in the text corpora.  To negate this 
form of bias, we masked the player and team names during training.  
    After the sentiment classifier was trained, the Local Interpretable 
Model-Agnostic Explanations (LIME) framework was used to 
understand the model’s predictions and behavior [21]. The LIME 
method generates a local linear approximation of the model and 
perturbs the model to identify features that influence the 
classification results the most. LIME was useful to understand the 
the relation between a model’s word association and the predicted 
label. For example, “turnover” has to be interpreted as negative for 



 
 

 

the offense and positive for the defense. LIME shows if “turnover” 
is weighted correctly within the context of offense and defense.  

4.6 Player Score Probability Distribution 
A multiple regression ensemble based on player position provided 
a point projection for each player.  Equation 13 shows the general 
linear regression used for each position.  

𝑠(�̅�) = 𝛽" + 𝛽$𝑥$ +⋯+ 𝛽|(|𝑥|(|                       (13)   
   𝑝𝑑𝑓8(ℎ&…ℎ= ∪ 𝑠"…𝑠=) = 𝑚𝑖𝑛5&AA(𝑝𝑑𝑓", 𝑝𝑑𝑓$, … , 𝑝𝑑𝑓?F)  (14)                                               

 

 
Figure 3: Mobile application player compare experience 

 
Figure 3 shows a mobile user interface within the ESPN ecosystem 
that we created for Fantasy Football players.  To produce the best 
PDF, the end of the machine learning pipeline fit 24 different PDFs 
to a player’s historical and predicted performance as shown in 
Equation 14.  Some example distributions include alpha, anglit, 
beta, bradford, chi, wald, vonmises, normal, and Rayleigh.  If the 
player, such as a rookie, did not have enough historical data, similar 
player data was retrieved.    
   The distribution that fit the data the best was selected to run 1,000 
simulations or random draws.  The simulations produced more 
likely real-world curves for player performances.  We highlighted 
the 15th and 85th percentile on the graph so that users could easily 
compare players. 

5 Results 

Overall, the system provided informative and accurate Fantasy 
Football insights from text, video, audio, and statistics. The system 
projected 88.2% of players to be within 10 points of their projection 
and 71% of player scores to be within 7 points of a projection. From 
a score distribution perspective, 83% of players are within the high 
score range while 71% of players are within the low score range. 
Impressively, 90% of players either boomed or were close to boom 
when predicted to boom. On the other end, 78% of players either 
busted or were close to a bust when predicted to bust. 

5.1 Document2Vector Results 

The model was tested with two different types of semantic meaning 
evaluations.  First, an analogy test was provided to the model.  If 
the relation Travis Kelce is to the Chiefs as Todd Gurley is to the 
X is presented to the model, the correct answer for X should be the 
Rams.  In the player to team analogy testing, the correct answer was 
in the top 1% of the data 100% of the time.  The team to location 
analogy was slightly lower, with a 93.48% accuracy because the 
natural queries were not focused around teams.  The second test 
provided a set of keywords to the model and expected a related 
word.   For example, if Tom Brady input into the model, we would 
expect to see the Patriots as output. 

Test Subject Criteria Accuracy 
Analogy Players:Team Top 500 

(<1% of the 
data) 

100% 

Analogy Team:Location Top 500 
(<1% of data) 

93.48% 

Keyword Players Top 70 80% 
Keyword Team & 

Location 
Top 500 74% 

Table 1: Document2Vector Tests and Results 

5.2 Deep Learning Results 
The bust game classifier had an accuracy of 55% with a modest 
class separation, while the boom classifier had an accuracy of 67%.  
The bust classifier was optimized on real world player bust 
distribution and accuracy because players with high bust 
probabilities significantly over scored their projections on average. 
The bust players that were missed and marked incorrect were very 
close to the binary threshold of 0.5.  Further, the negative predictive 
value of the bust model is 85.5% accurate and it produces a real-
world percentage of bust players at 12%.  As a tradeoff, the over 
predicting of busts would be worse than a high accuracy.  The 
accuracy number is not as meaningful an evaluation metric as the 
negative predictive value and percentage of players predicted to be 
a bust.   
   The play with injury classifier had an accuracy of 77% with a 
positive predictive value of 68.1%.  The positive predictive value 
is very important for this classifier so that we know if a player is 
going to play with a hidden injury.  The play meaningful minutes 
model produced an accuracy of 91.4%.  The output of the class and 
probability provide valuable predictors for the score projections as 
well as insights about each football player.  

 
Figure 4: Deep Learning Results 

    From a real-world distribution of players that boom or bust, we 
were close to our objectives. Between 12-16% of players generally 
boom while 30% can bust week over week. Figure 4 shows our 



  
 

 
 

results. Fantasy football users would quickly lose confidence in our 
system if we over predicted boom or bust. 

 
Figure 5: Boom and Bust Player Distribution 

   In addition, we ensured that players on more popular teams were 
not biased with our deep learning algorithms. We examined the 
Generalized False Positive Rate (GFPR) and the Generalized False 
Negative Rate (GFNR) for both boom and bust between privileged 
and unprivileged values. After post processing, the bias within 
boom and bust models were close to zero for GFPR and GFNR 
metrics while not impacting model accuracy. 

5.3 Sentiment Results 

The sentiment classifier had an accuracy of 81%. The classifier 
did well on labelling positive and negative articles with accuracies 
of 87% and 83%. The neutral sentiment had an accuracy of 61%, 
which was harder to predict because of inter-annotator 
disagreement. The sentiment labels next to each piece of evidence 
provided users with overall estimation of the crowd’s opinion of 
each player.  

5.4 Score Projection Results 
A linear combination of deep learning player states and ESPN 
statistical data produced the best RMSE score of 6.78.  On average, 
each player projected to score significant points over all positions 
will have a projection score that is off by 6.78 points when ESPN 
and our system is combined. 

Model RMSE (Point Error) 
ESPN Projection 6.81 
Watson Adjusted 
Projection 

6.92 

Combined Projection 6.78 
Table 2: Point Projection Performance 

    The accumulation of the score projections over the duration of 
the football season provide data points for curve fitting as discussed 
in section 3.5. The low RMSE validates the probability density 
curve fits so that users can compare player shapes to each other as 
shown in Figure 3. 

6 Deployment on Cloud 
After training and evaluating all of the models and mathematical 
techniques illustrated in Section 5, we uploaded them to COS. The 
binary files were placed into buckets so that the deployed 
applications could pull down the models to local disk. The models 
were only pulled before each 300-player batch job. In addition, we 
could force each phase of the machine learning pipeline to pull 
down a new model if it was updated. This approach gave the team 

the flexibility to test new model architectures and hyperparameters 
throughout the long fantasy football season.  
    The use of the double CDN with the JSON content generation 
pattern discussed in Section 3, shielded the project from any 
backend processing inaccuracies. The diversity of data at different 
volumes can cause machine learning resource contention or 
unanticipated data states. For example, a few of the probability 
density function curve fittings produced asymptotes that confused 
users. As a result, we were able to remove a type of curve fit and 
rerun a specific player without any down time.  
   The flexibility of Cloud Foundry and Docker containers helped 
to support the movement of cloud workloads vertically and 
horizontally. The team could rapidly deploy changes, hot fixes, or 
new features in an agile environment without having to wait for 
long build times.  

7 Application Impact 
Each week throughout 2017, 2018 and 2019, fantasy football team 
owners had the option of using our system to set team lineups. This 
was presented to fans in a few different forums such as player 
screens in the ESPN Fantasy App and segments aired on TV or 
broadcasted on national radio.  We found that empirical based 
decisions supported by the system help to minimize the temptation 
to make biased sit and start decisions concerning favored and 
unfavored players . In the first month of 2019 alone, over 5.5 billion 
insights were produced for the 9.8 million users that accessed the 
ESPN Fantasy App for 2.4 billion minutes that month.  This 
unprecedented level of depth and insight from unstructured data 
complimented by ESPN’s traditional player statistics and analysis 
provided a comprehensive and detailed story about each player.  
    Towards the end of the 2018 ESPN Fantasy Football season, 
over a thousand players participated in a survey to measure the 
impact of our system.  From the active survey respondents, over 
80% of the users who utilized the feature said the Watson AI 
insights generated from our system helped them to enjoy fantasy 
football better. The more a fan followed the NFL, the more likely 
they used our system.  
    From a marketing perspective, we had 2 celebrity-focused 
fantasy football leagues that promoted our system. Former NFL 
players, NBA players, ESPN on-air talent, IBM data scientists, and 
a movie star were among the competitors in a public ESPN 
influencer league. The influencer league and interest around our 
system generated 35 million impressions, 10.6 million video views, 
and 744 thousand total engagements from over 600 media pieces. 
The conversation on social media about ESPN Fantasy Football 
grew 24% in positivity from 2017. 

   
Figure 6: 2018 and 2019 Fantasy Football Social Influencer 

League 
 



 
 

 

 
 

Source Link 
Explainer Video https://youtu.be/xCsz

kWFAxmA 
IBM Homepage https://www.ibm.com

/sports/fantasy 
ESPN Fantasy Show https://youtu.be/4BsDzKvBb3E  
Blog Series https://developer.ibm.com/series/watson-

behind-the-code-fantasy-football-2018/ 
Front of Code 
Commercial 

https://www.youtube.com/watch?v=1cYr
k67I00E 

2019 Podcast https://ibm.co/2Sv5Uud 
2018 Podcast https://bit.ly/2BQ3PS6 

 

Table 3: Additional Impact Information 

8 Future Work 
To further our research and user experience using multimedia data 
throughout fantasy football, we are developing a player trade 
discoverer. The trade discoverer will find possible trading partners 
within a league and suggest a trade. We would like to examine the 
tradeoff between the likelihood of a trade being accepted with the 
utility gained by the initiating team. Our goals are to increase 
successful trades throughout fantasy football that help all teams 
involved within a transaction to increase their team’s score ceiling. 
The experience will be engaging and insightful across mobile and 
desktop applications. 
   From a deployment perspective, the fantasy football system will 
be deployed on OpenShift for the 2020 season. OpenShift is a 
Docker container management system that runs on top of 
Kubernetes. With a total of 16 projects, 7 will be wrapped into 
Docker images for deployment on an OpenShift cluster. The build 
pipeline will automatically handle code changes in GitLab, create 
new Docker images, and deploy the applications across Kubernetes 
pods in a canary strategy. 
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