

Target Sentiment Analysis: Extraction, Classification, and Sentiment-Aware Embeddings

BING Lidong (邴立东) <u>http://www.cs.cmu.edu/~lbing/</u>

R&D Center Singapore Machine Intelligence Technology Alibaba DAMO Academy

ICDM-SENTIRE 2018 Nov. Singapore

Alibaba DAMO Academy

Rooted in Science, Innovate for Applications

"Must outlive Alibaba", "Serve at least 2 billion people worldwide", "Future-oriented and use

technology to solve the challenges of the future"

5 Research Areas | 14 Laboratories

Machine Intelligence Technology at DAMO

Hundreds of Researchers and Engineers in Hangzhou, Beijing, Seattle, Silicon Valley and Singapore

Speech Processing

- Speech Recognition
- Speech Synthesis
- Voice Biometrics
- Human-Machine Interaction

Natural Language Processing

- Semantic Analysis
- Sentiment Analysis
- Text Classification
- Question and Answering, Chatbot
- Machine Translation

Image/Video Analytics

- Product Identity & Search
- Face Recognition
- Object Recognition
- Scene Recognition
- Video Search

Optimization & Decision Making

- Predictive Inventory Optimization
- Delivery Assignment Optimization
- Manufacturing Scheduling
- Predictive Maintenance

NLP R&D at Alibaba

NLP research has made great progress from using complex sets of human rules, statistical natural language processing techniques to deep learning nowadays

Missions of Alibaba's NLP R&D:

- 1. Support all the demands of NLP techniques and applications in Alibaba's eco-system (new-retail, finance, logistics, entertainment etc.)
- 2. Enable Alibaba's business partners with NLP solutions
- 3. Advance the State-of-the-Art NLP research with colleagues from both academia and industries

Alibaba-DAMO-NLP: 100 employees (e.g., former tenured Professors and senior researchers) in 6 locations all over the world.

R&D Center Singapore

An international R&D team with the focus on developing cutting edge speech and language processing technologies, including **ASR**, **TTS**, **NLP**, **and MT**.

Paying special attention to the areas of **multilingual speech and language processing**, including:

- Speech recognition and synthesis of multiple languages
- NLP technology for multiple languages
- Machine translation systems for Southeast Asian languages

AliNLP

AliNLP is a large-scale NLP platform for the entire Alibaba Eco-system. The platform covers major aspects of NLP such as data collecting/processing techniques and multilingual algorithms for lexical, syntactic, semantic, document analysis, and distributed representation of text

Used in 350+ business scenarios (Oct, 2018) with more than 1000Billion+ API calls per day.

Some key characteristics:

- Utilizing behavior data instead of demanding human annotations for NLP algorithms
- Utilizing multiple correlated tasks for improving effectiveness of individual tasks of the complex Alibaba eco-system

AliNLP

NLP

Machine Translation at Alibaba

2017-2018 :

- Support AliExpress, Alibaba.com and Lazada. Processing 250 billion requests in the whole year (60% increase)
- Translating 20 trillion words in the whole year (\$2 billion if using Google)
- In WMT'18 got No. 1 in 5 MT tasks for automatic evaluation

where Service

Machine Translation at Alibaba

Real-time Machine Translation that supports the instant communication Between wholesale buyer and seller.

0

Voice-enabled Ticket Machine at Shanghai Subway (video)

Voice-enabled Coffee-Order Machine at COSTA (video)

O between

Target Sentiment Analysis: Extraction, Classification, and Sentiment-Aware Embeddings

SHI Bei (石贝)

LI Xin (李昕)

CHEN Peng (陈鹏)

Target/Aspect Oriented Sentiment Analysis

- Sentiment classification at both the document and sentence (or clause) levels are useful, but they do not find what people liked and disliked.
- We need to go to the entity and aspect levels, or target level.
- Problems (E.g. "*Apple is doing very well in this poor economy*.")
 - Target extraction: identify the mentioned sentiment target in a sentence.
 - E.g. "Apple" and "economy"
 - Sentiment prediction: predict the sentiment polarity over the target.
 - E.g. Positive on "Apple", but negative on "economy"

RAM: Recurrent Attention Memory Network for Aspect Sentiment Prediction [EMNLP 2017]

- Task: predict sentiment polarity over an aspect
 - E.g. predict sentiment over "*battery*" in "The *battery* of the laptop lasts quite long".
 - A classification problem, given a target and its sentence.
- Motivation:
 - Single attention is usually not enough to capture complicated features, such as *transitive sentences, and comparative sentence*
 - For using multiple attention, the main issue is *how to make them attend different information, and how to combine the attended features.*

RAM Model

RAM Model

• Episode update, a GRU

$$r = \sigma(W_r i_t^{AL} + U_r e_{t-1})$$

$$z = \sigma(W_z i_t^{AL} + U_z e_{t-1})$$

$$\tilde{e}_t = \tanh(W_x i_t^{AL} + W_g (r \odot e_{t-1}))$$

$$e_t = (1-z) \odot e_{t-1} + z \odot \tilde{e}_t$$

• Attention computation

$$i_t^{AL} = \sum_{j=1}^T \alpha_j^t m_j \qquad \alpha_j^t = \frac{\exp(g_j^t)}{\sum_k \exp(g_k^t)} \qquad g_j^t = W_t^{AL}(m_j, e_{t-1}[, v_{\tau}]) + b_t^{AL}(m_j, e_{t-1}[, v_{t-1}[, v_{\tau}]) + b_t^{AL}(m_j, e_{t-1}[, v_{\tau}]) + b_t^{AL}(m_j, e_{t-$$

RAM Case Studies

✓ <u>Using multiple attentions</u>

INPUT: "Supplied software: the software comes with this machine is greatly welcomed compared to what windows comes with."

TARGET: windows

- Two attentions
 - > Firstly attend "welcomed", and then "compared"

Combine them non-linearly, and generate a negative sentiment

One attention

More weight on "greatly", make a wrong prediction

✓ <u>Multiple target in one sentence</u>

INPUT: "甲的素质,能力比乙绝对是强的!!!"

- ◆ For target "♥"
 - Predict a positive by attending "ability", "stronger"

• For target "Z"

> Attend "stronger" after \$T\$, then "than" before \$T\$

> Inverse sentiment of "stronger" with GRU

TNet: Transformation Networks for Target-Oriented Sentiment Classification [ACL 2018]

- Task: predict sentiment polarity over an aspect
- Motivation
 - Attention usually attends irrelevant information
 - Is there an alternative way to keep its advantage but overcome the limitation?
- Our approach
 - Perform aspect specific transformation on hidden states from RNN
 - Apply highway or residual like method to keep the context information of the original hidden state
 - Using a CNN layer to extract n-gram features

TNet Model

TST Component

- Incorporating opinion target information into the context word representations
 - Generate the target representation, conditioned on a context word.

$$r_{i}^{\tau} = \sum_{j=1}^{m} h_{j}^{\tau} * \mathcal{F}(h_{i}^{(l)}, h_{j}^{\tau})$$
$$\mathcal{F}(h_{i}^{(l)}, h_{j}^{\tau}) = \frac{\exp(h_{i}^{(l)\top} h_{j}^{\tau})}{\sum_{k=1}^{m} \exp(h_{i}^{(l)\top} h_{k}^{\tau})}$$

 A fully-connected layer to obtain the target specific representation of the i-th context word
 (1)

$$\tilde{h}_{i}^{(l)} = g(W^{\tau}[h_{i}^{(l)}:r_{i}^{\tau}]+b^{\tau})$$

LF/AS Context Preserving

- The context information from the LSTM layer will be lost after TST, so we design context preserving mechanisms to contextualize the generated targetspecific representations of context word.
- Lossless Forwarding

$$h_i^{(l+1)} = h_i^{(l)} + \tilde{h}_i^{(l)}, i \in [1, n], l \in [0, L]$$

Adaptive Scaling

$$h_i^{(l+1)} = t_i^{(l)} \odot \tilde{h}_i^{(l)} + (1 - t_i^{(l)}) \odot h_i^{(l)}$$

$$t_i^{(\iota)} = \sigma(W_{trans}h_i^{(\iota)} + b_{trans})$$

Result Comparisons

	Madala	LA	LAPTOP		EST	TWITTER		
	wodels	ACC	Macro-F1	ACC	Macro-F1	ACC	Macro-F1	
TNet variants	TNet-LF	76.01 ^{†.‡}	71.47 ^{†.‡}	80.79 ^{1.1}	70.84 [‡]	74.68 ^{†,‡}	73.36 ^{†,‡}	
	SVM	70.494	-	80.16 [±]	-	63.40*	63.30*	
	AdaRNN	-	÷.	33	-	66.30 [‡]	65.90 [±]	
	AE-LSTM	68.90 [‡]	-	76.60 [±]	-		1.00	
	ATAE-LSTM	68.70 [‡]	2	77.20 ^t		-		
Developer	IAN	72.10 ^t		78.60 ^t	-	-	-	
Baselines	CNN-ASP	72.46	65.31	77.82	65.11	73.27	71.77	
	TD-LSTM	71.83	68.43	78.00	66.73	66.62	64.01	
	MemNet	70.33	64.09	78.16	65.83	68.50	66.91	
	BILSTM-ATT-G	74.37	69.90	80.38	70.78	72.70	70.84	
	RAM	75.01	70.51	79.79	68.86	71.88	70.33	

TNet performs well for different kinds of UGC, such as product reviews and tweets.

- TST captures the correlation between context word and aspect term
- CNN-based feature extractor can extract accurate features

And in case of

Case Study

Sentence	RAM	TNet
>1. Air has higher [resolution] _P but the [fonts] _N are small.	(N^{x}, N)	(P, N)
2. Great [food] _P but the [service] _N is dreadful .	(P, N)	(P, N)
3. Sure it's not light and slim but the [features] make up for it 100%.	NX	Р
4. Not only did they have amazing , [sandwiches] _P , [soup] _P , [pizza] _P etc , but their [homemade sorbets] _P are out of this world !	$(P, P, O^{\mathbf{x}}, P)$	(P, P, P, P)
►5. [startup times] _N are incredibly long : over two minutes .	P ×	Ν
6. I am pleased with the fast $[log on]_P$, speedy [wifi connection]_P and the long [battery life]_P (> 6 hrs).	(P, P, P)	(P, P, P)
7. The [staff] _N should be a bit more friendly.	P×	P×

[An aspect is underlined with a particular color, and its corresponding most informative n-gram feature captured by TNet is in the same color]

Aspect Term Extraction with History Attention and Selective Transformation [IJCAI 2018]

- Task: extract the target that carrying sentiment in a sentence
 - E.g., "I love the operating system and preloaded software"
 - A token level sequence labeling problem
- Intuition
 - Aspect terms should co-occur with opinion words, according to the task definition of aspect sentiment analysis
 - Introduce an auxiliary opinion word detection task to improve the performance of aspect extraction
 - Model the coordinate structure, e.g. "We love the food, drinks, and atmosphere!"

The Model: THA

- *Truncated history-attention* (THA): explicitly exploit the relation between the previous predictions and the current prediction in RNN.
 - Reduce error in predicting the current label by considering the B-I-O definition
 - Improve the prediction accuracy for multiple aspects in one coordinate structure
- History-aware aspect representations: $\tilde{h}_t^A = h_t^A + \text{ReLU}(\hat{h}_t^A)$

• Aspect history:
$$\hat{h}_t^A = \sum_{i=t-N^A}^{t-1} s_i^t \times \tilde{h}_i^A$$

• Importance score for each

$$a_i^t = \mathbf{v}^{\mathsf{T}} \operatorname{tanh}(\mathbf{W}_1 h_i^A + \mathbf{W}_2 h_t^A + \mathbf{W}_3 \tilde{h}_i^A) \qquad s_i^t = \operatorname{Softmax}(a_i^t)$$

The Model: STN

- The auxiliary task
 - Predict BIO labels for opinion words to explore the cooccurrence of aspect terms and opinion words.
 - The aim is to distill the intermediate features as opinion summary conditioned on t
- Selective transformation network (STN) to highlight opinion features with respect to the aspect candidate at *t* so as to suppress the noise.
 - For "the fish is unquestionably fresh", opinion feature of "fresh" is useful for predicting "fish" as an aspect term.

The Model: details

• New opinion representation conditioned on time *t*

$$\hat{h}_{i,t}^{O} = h_i^{O} + \text{ReLU}(\mathbf{W}_4 \tilde{\mathbf{h}}_t^A + \mathbf{W}_5 h_i^O)$$

• Distilled opinion summary

$$\hat{h}_{t}^{O} = \sum_{i=1}^{T} w_{i,t} \times \hat{h}_{i,t}^{O}$$
$$w_{i,t} = \text{Softmax}(\tanh(\tilde{h}_{t}^{A} \mathbf{W}_{bi} \hat{h}_{i,t}^{O} + \mathbf{b}_{bi}))$$

 x_{r-1}

Case Study: attending better opinion words

With STN

•

Case Study: extraction results

Input sentences	Output of LSTM	Output of our model
1. the device speaks about it self	device	NONE
2. Great survice !	NONE	survice
3. Apple is unmatched in product quality, <u>aesthetics</u> , <u>craftmanship</u> , and <u>custormer service</u>	quality, aesthetics, custormer service	product quality, aesthetics, craftmanship, custormer service
4. I am pleased with the fast log on, speedy <u>WiFi connection</u> and the long battery life	WiFi connection, battery life	log on, WiFi connection, battery life
5. Also, I personally wasn't a fan of the portobello and asparagus mol	asparagus mole e	portobello and asparagus mole

A Unified Model for Opinion Target Extraction and Target Sentiment Prediction [AAAI 2019]

- Task: extract the target that carrying sentiment in a sentence, and predict the sentiment polarity
 - E.g., "I love the [operating system]_{POS}, but the [preloaded software]_{NEG} is bad."

Input	The	AMD	Turin	Processor	seems	to	always	perform	much	better	than	Intel
Loint	0	В	I	E	0	0	0	0	0	0	0	S
Joint	0	POS	POS	POS	0	0	0	0	0	0	0	NEG
Unified	0	B-POS	I-POS	E-POS	0	0	0	0	0	0	0	S-NEG

- Sequence labeling problem with unified tagging scheme:
 - <u>B-POS,I-POS,E-POS,S-POS</u>; B-NEG,I-NEG,E-NEG,S-NEG; ...
- Motivation: if two sub-tasks have strong couplings, a more integrated model is usually more effective than a pipeline.
- Intuition
 - The unified tagging and BIO tagging have the same boundary
 - The consistency of individual words' sentiment within the same target mention

The Model: BG component

- Transform the BIO predictions (softly) $z_t^{\mathcal{S}'} = (\mathbf{W}^{tr})^\top z_t^{\mathcal{T}}$
- Merge the predictions

$$\tilde{z}_t^{\mathcal{S}} = \alpha_t z_t^{\mathcal{S}'} + (1 - \alpha_t) z_t^{\mathcal{S}}$$

alpha is derived based on the confidence of $z_t^{\mathcal{T}}$

- for confident boundary prediction, larger alpha
- otherwise, smaller alpha

The Model: SC component

• In one multi-word target, the sentiment polarities of words should be consistent.

• Use a gate to merge the features from the current and the previous time steps.

$$\tilde{h}_t^{\mathcal{S}} = g_t \odot h_t^{\mathcal{S}} + (1 - g_t) \odot \tilde{h}_{t-1}^{\mathcal{S}}$$
$$g_t = \sigma(\mathbf{W}^g h_t^{\mathcal{S}} + \mathbf{b}^g)$$

Result Comparisons

- The *Base model* (the stacked LSTMs) always outperforms *LSTM-unified*.
- Adding BG component
 (Base model + BG), the
 performances are improved a lot
- Adding SC or OE into the *"Base model + BG"* does not bring in too much gains.
- But putting them together, i.e., "*Full model*", leads to the new state-of-the-art.

Madal		DL			\mathbb{D}_{R}		\mathbb{D}_{T}		
Model	Р	R	F1	P	R	F1	Р	R	F1
CRF-joint	57.38	35.76	44.06	60.00	48.57	53.68	43.09	24.67	31.35
CRF-unified	59.27	41.86	49.06	63.39	57.74	60.43	48.35	19.64	27.86
NN-CRF-joint	55.64	34.48	45.49	61.56	50.00	55.18	44.62	35.84	39.67
NN-CRF-unified	58.72	45.96	51.56	62.61	60.53	61.56	46.32	32.84	38.36
CRF-pipeline	59.69	47.54	52.93	52.28	51.01	51.64	42.97	25.21	31.73
NN-CRF-pipeline	57.72	49.32	53.19	60.09	61.93	61.00	43.71	37.12	40.06
HAST-TNet	56.42	54.20	55.29	62.18	73.49	67.36	46.30	49.13	47.66
LSTM-unified	57.91	46.21	51.40	62.80	63.49	63.14	51.45	37.62	43.41
LSTM-CRF-1	58.61	50.47	54.24	66.10	66.30	66.20	51.67	44.08	47.52
LSTM-CRF-2	58.66	51.26	54.71	61.56	67.26	64.29	53.74	42.21	47.26
LM-LSTM-CRF	53.31	59.4	56.19	68.46	64.43	66.38	43.52	52.01	47.35
Base model	60.00	46.85	52.61	61.48	66.16	63.73	53.02	41.47	46.50
Base model + BG	58.58	50.63	54.31	67.51	66.42	66.96	52.26	43.84	47.66
Base model + BG + SC	58.95	53.00	55.81	63.95	69.65	66.68	53.12	43.60	47.79
Base model + BG + OE	63.43	49.53	55.62	62.85	66.77	65.22	53.10	43.50	47.78
Full model	61.27	54.89	57.901.5	68.64	71.01	69.80 ^{±,‡}	53.08	43.56	48.01

Case Study

Immut	E	lase model	Base	e model + BG	Full model		
Inpor	Target	Complete	Target	Complete	Target	Complete	
 And the fact that it comes with an [25 processor]_{POS} definitely speeds things up 	i5 processor	[processor] _{POB} (X)	i5 processor	[15 processor]Post	i5 processor	[15 processor]POS	
2. There were small problems with [mac office]mo.	mac office	$[mac]_{\rm NEG}(X)$	mac office	[mac office] _{NEG}	mac office	{mac office] _{NED}	
3. The [teas] _{POS} are great and all the [sweets] _{POS} are homemade	teas, sweets	[teas] _{POS} , [sweets] _{POS}	teas, sweets, homemade (X)	[teas] _{POS} , [sweets] _{POS} , [homemode] _{POS} (X)	teas, sweets	[teas] _{POS} , [sweets] _{POS}	
4. I love the [form factor]ros	NONE	NONE	NONE	NONE	form factor	[form factor]pos	
5. 1 blame the [Mac OS] HEG -	Mac OS	[Mac _{NEG} OS _{NEZ}] (X)	Mac OS	[Maches OSpos] (X)	Mac OS	[Mac OS]MEG	
6. Also, I personally wasn't a fan of the [portobello and asparagus mole] _{HEG} .	portobello and asparagus mole	[portobello _{NEG} and _{SEG} asparagus _{NEG} mole _{NEU}] (X)	portobello and asparagus mole	[portobello _{NES} and _{NES} asparagus _{NED} mole _{NED}] (X)	portobello and asparagus mole	[portobello and asparagus mole] _{NES}	

- Stacking two LSTMs (*Base model*) may miss target words. E.g. Inputs 1 and 2 are lost.
- Base model+BG can solve Inputs 1 and 2, but fail for Inputs 3 and 4 since inaccurate target prediction

Base model and Base model +BG can still predict inconsistent sentiments within the same target, e.g. Inputs 5 and 6.

Learning Domain-Sensitive and Sentiment-Aware Word Embeddings [ACL 2018]

- Task: generate domain-sensitive and sentiment-aware word embeddings
- Sentiment-Aware: Some words, especially sentiment words, have similar syntactic context but opposite sentiment polarity, such as the words "good" and "bad"
- **Domain-Sensitive**: The polarity of some sentiment words varies according to their domain.
 - E.g. "lightweight" has different polarity for Electronics and Movie

Our DSE Model

- For word *w*, appearing in two domains *p* and *q*:
 - One domain-common vector: U_w^c , two domain-specific vectors: U_w^ρ and U_w^q
 - A latent variable: z_w=1, w is common in both p and q; z_w=0, w is specific to p or q

• Context prediction
$$p(w_t|w, z_w = 1) = \frac{\exp(U_w^c \cdot V_{w_t})}{\sum_{w' \in \Lambda} \exp(U_w^c \cdot V_{w'})}$$
$$p(w_t|w, z_w = 0) = \begin{cases} \frac{\exp(U_w^p \cdot V_{w_t})}{\sum_{w' \in \Lambda} \exp(U_w^p \cdot V_{w'})}, \text{ if } w \in \mathcal{D}^p \\ \frac{\exp(U_w^q \cdot V_{w_t})}{\sum_{w' \in \Lambda} \exp(U_w^q \cdot V_{w'})}, \text{ if } w \in \mathcal{D}^q \end{cases}$$

Our DSE Model

Sentiment prediction

$$p(y_w = 1 | w, z_w = 1) = \sigma(U_w^c \cdot \mathbf{s})$$

 $p(y_w = 1 | w, z_w = 0) = \begin{cases} \sigma(U_w^p \cdot \mathbf{s}) & \text{if } w \in \mathcal{D}^p \\ \sigma(U_w^q \cdot \mathbf{s}) & \text{if } w \in \mathcal{D}^q \end{cases}$

• Objective Function

$$\mathcal{L} = \mathcal{L}^p + \mathcal{L}^q$$
 $\mathcal{L}^p = \sum_{r \in \mathcal{D}^p} \sum_{w \in r} \sum_{w_t \in c_w} \log p(w_t | w) + \sum_{r \in \mathcal{D}^p} \sum_{w \in r} \log p(y_w | w)$

Case Study

Term	Domain	p(z = 1)	Sample Reviews					
\rightarrow	B & D	0.999	- I find Seth Godin's books incredibly lightweight. There is really nothing of any					
B & E		0.404	substance here. (B)					
	B & K	0.241	- I love the fact that it's small and lightweight and fits into a tiny pocket on my					
lightweight	D & E	0.380	camera case so I never lose frack of it. (E)					
\rightarrow	D&K	0.013	- These are not " lightweight" actors. (D)					
\rightarrow	E & K	0.696	- This vacuum does a pretty good job. It is lightweight and easy to use. (K)					
\rightarrow	B & E	0.435	- I'm glad Brando lived long enough to get old and fat, and that he didn't die tragically young like Marilyn, JFK, or Jimi Hendrix. (B)					
die →	B & K	0.492	- Like many others here, my CD-changer died after a couple of weeks and it wouldn't read any CD. (E)					
	Е&К	0.712	- I had this toaster for under 3 years when I came home one day and it smoked and died. (K)					

[B: books, D: DVDs, E: electronics items, K: kitchen appliances]

Open Questions

- The current researches may not be practically usable
 - A small number of domains
 - Small training and testing data
- Cross domain and cross lingual problems
 - Thousands of domains
 - Tens of languages
- UGC data is changing very rapidly, looks like this task cannot be completely solved.

Thanks

