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Abstract

An important difference between traditional AI sys-
tems and human intelligence is our ability to harness
common sense knowledge gleaned from a lifetime of
learning and experiences to inform our decision mak-
ing and behavior. This allows humans to adapt easily
to novel situations where AI fails catastrophically for
lack of situation-specific rules and generalization capa-
bilities. Common sense knowledge also provides the
background knowledge for humans to successfully op-
erate in social situations where such knowledge is typ-
ically assumed. In order for machines to exploit com-
mon sense knowledge in reasoning as humans do, more-
over, we need to endow them with human-like reason-
ing strategies. In this work, we propose a two-level af-
fective reasoning framework that concurrently employs
multi-dimensionality reduction and graph mining tech-
niques to mimic the integration of conscious and uncon-
scious reasoning, and exploit it for sentiment analysis.

Introduction
Current thinking in cognitive psychology suggests that hu-
mans process information at a minimum of two distinct
levels. There is extensive evidence for the existence of
(at least) two processing systems within the human brain,
one that involves fast, parallel, unconscious processing, and
one that involves slow, serial, more conscious processing
(Kirkpatrick and Epstein 1992; Chaiken and Trope 1999;
Smith and DeCoster 2000; Epstein 2003; Kahneman 2011).
Dual-process models of automatic and controlled social cog-
nition have been proposed in nearly every domain of social
psychology.

Evidence from neurosciences supports this separation,
with identifiably different brain regions involved in each of
the two systems (Lieberman 2007). Such systems, which
we term U-level (unconscious) and C-level (conscious), can
operate simultaneously or sequentially, and are most effec-
tive in different contexts. The former, in particular, works
intuitively, effortlessly, globally, and emotionally. The lat-
ter, in turn, works logically, systematically, effortfully, and
rationally.
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In this work, we propose to emulate such dual-process
model through a novel two-level affective common sense
reasoning framework, termed sentic activation, that con-
currently exploits multi-dimensionality reduction and graph
mining techniques for the natural language processing
(NLP) task of sentiment analysis.

The structure of the paper is as follows: the first section
introduces the field of sentiment analysis and explains why
common sense reasoning is particularly useful for it; the
second section explains in detail the multi-dimensionality
reduction techniques adopted to perform unconscious affec-
tive reasoning; the third section illustrates the graph min-
ing techniques employed to perform reasoning at conscious
level; next, the development of a sentiment analysis engine
and its evaluation are presented; the last section, eventually,
comprises concluding remarks and future directions.

Sentiment Analysis
Sentiment analysis is a branch of the broad field of text data
mining (Hearst 1997) and refers generally to the process
of extracting interesting and non-trivial patterns or knowl-
edge from unstructured text documents. It can be viewed as
an extension of data mining or knowledge discovery from
(structured) databases (Fayyad, Piatetsky, and Smyth 1996;
Simoudis 1996).

As the most natural form of storing information is text,
sentiment analysis is believed to have a commercial poten-
tial higher than that of data mining. Sentiment analysis,
however, is also a much more complex task as it involves
dealing with text data that are inherently unstructured and
fuzzy. It is a multi-disciplinary research area that involves
the adoption of techniques in fields such as text analysis, in-
formation retrieval and extraction, auto-categorization, ma-
chine learning, clustering, and visualization.

Most of the existing approaches to opinion mining and
sentiment analysis rely on the extraction of a vector repre-
senting the most salient and important text features, which
is later used for classification purposes. Some of the most
commonly used features are term frequency (Wu et al. 2008)
and presence (Pang, Lee, and Vaithyanathan 2002). The lat-
ter, in particular, is a binary-valued feature vectors in which
the entries merely indicate whether a term occurs (value 1)
or not (value 0) formed a more effective basis for review
polarity classification.
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This is indicative of an interesting difference between typ-
ical topic-based text categorization and polarity classifica-
tion. While a topic is more likely to be emphasized by
frequent occurrences of certain keywords, overall sentiment
may not usually be highlighted through repeated use of the
same terms. Differently from topics, in fact, sentiments can
often be expressed in a more subtle manner, making it dif-
ficult to be identified by specific keywords, especially when
considering multiple domains.

Humans readers do not face such difficulty as they can in-
fer the cognitive and affective information associated with
natural language text through their common sense knowl-
edge, that is, obvious or widely accepted things that people
normally know about the world but which are usually left
unstated in discourse, e.g., that things fall downwards (and
not upwards) and people smile when they are happy.

An important feature of common sense reasoning, in fact,
is the sensitivity to nuanced readings of language. A sen-
tence can be read differently depending on nuances in opin-
ionated text and such nuanced reading can lead to markedly
different reasoning trajectories. The first step in human cog-
nitive and affective information processing, in fact, is in an
appraisal of the current situation (Scherer, Shorr, and John-
stone 2001). In order to accordingly infer the cognitive and
affective information associated with natural language text,
next-generation sentiment analysis methods need to go be-
yond a mere word-level analysis and use common sense rea-
soning to better grasp the conceptual rules that govern sen-
timent and the clues that can convey these concepts from
realization to verbalization in the human mind.

To this end, we propose an ensemble application of multi-
dimensionality reduction and graph mining techniques on
AffectNet, an affective common sense knowledge base built
upon WordNet-Affect (WNA) (Strapparava and Valitutti
2004), a linguistic resource for the lexical representation of
affect, and ConceptNet (Havasi, Speer, and Alonso 2007), a
semantic network of common sense knowledge.

Unconscious Affective Reasoning
In recent years, neuroscience has contributed a lot to the
study of emotions through the development of novel meth-
ods for studying emotional processes and their neural cor-
relates. In particular, new methods used in affective neu-
roscience, e.g., fMRI, lesion studies, genetics, electro-
physiology, paved the way towards the understanding of the
neural circuitry that underlies emotional experience and of
the manner in which emotional states influence health and
life outcomes.

A key contribution in the last two decades has been to
provide evidence against the notion that emotions are sub-
cortical and limbic, whereas cognition is cortical. This no-
tion was reinforcing the flawed Cartesian dichotomy be-
tween thoughts and feelings (Damasio 2003). There is now
ample evidence that the neural substrates of cognition and
emotion overlap substantially (Dalgleish, Dunn, and Mobbs
2009). Cognitive processes, such as memory encoding and
retrieval, causal reasoning, deliberation, goal appraisal, and
planning, operate continually throughout the experience of
emotion.

This evidence points to the importance of considering
the affective components of any human-computer interac-
tion (Calvo and D’Mello 2010). Affective neuroscience, in
particular, has provided evidence that elements of emotional
learning can occur without awareness (Ohman and Soares
1998) and elements of emotional behavior do not require
explicit processing (Calvo and Nummenmaa 2007). Affec-
tive information processing, in fact, mainly takes place at
unconscious level (U-level) (Epstein 2003). Reasoning, at
this level, relies on experience and intuition, which allow
considering issues intuitively and effortlessly. Hence, rather
than reflecting upon various considerations in sequence, the
U-level forms a global impression of the different issues.
In addition, rather than applying logical rules or symbolic
codes (e.g., words or numbers), the U-level considers vivid
representations of objects or events.

Such representations are laden with the emotions, details,
features, and sensations that correspond to the objects or
events. Such human capability of summarizing the huge
amount of inputs and outputs of previous situations to find
useful patterns that might work at the present time is hereby
implemented by means of AffectiveSpace, the vector space
representation of AffectNet (Cambria and Hussain 2012).

Affective Compression
In cognitive science, the term ‘compression’ refers to trans-
forming diffuse and distended conceptual structures that are
less congenial to human understanding so that they become
better suited to our human-scale ways of thinking. Compres-
sion is hereby implemented by representing affective com-
mon sense knowledge in a way that it is neither too concrete
nor too abstract with respect to the detail granularity needed
for performing a particular task.

To this end, we first generate a matrix representation of
AffectNet by applying blending (Havasi et al. 2009), a
technique that performs inference over multiple sources of
data simultaneously, taking advantage of the overlap be-
tween them. In particular, the alignment of ConceptNet and
WNA yields A, a matrix in which common sense and af-
fective knowledge coexist, i.e., a matrix 14,301 × 117,365
whose rows are concepts (e.g., ‘dog’ or ‘bake cake’), whose
columns are either common sense and affective features
(e.g., ‘isA-pet’ or ‘hasEmotion-joy’), and whose values indi-
cate truth values of assertions. Therefore, inA, each concept
is represented by a vector in the space of possible features
whose values are positive for features that produce an as-
sertion of positive valence (e.g., ‘a penguin is a bird’), neg-
ative for features that produce an assertion of negative va-
lence (e.g., ‘a penguin cannot fly’), and zero when nothing
is known about the assertion.

The degree of similarity between two concepts, then, is
the dot product between their rows in A. The value of such
a dot product increases whenever two concepts are described
by the same features and decreases when they are described
by features that are negations of each other. In particular,
we use truncated singular value decomposition (SVD) (Wall,
Rechtsteiner, and Rocha 2003) in order to obtain a new ma-
trix containing both hierarchical affective knowledge and
common sense.
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The resulting matrix has the form Ã = Uk Σk V
T
k and

is a low-rank approximation of A, the original data. This
approximation is based on minimizing the Frobenius norm
of the difference between A and Ã under the constraint
rank(Ã) = k. For the Eckart-Young theorem (Eckart and
Young 1936) it represents the best approximation ofA in the
least-square sense, in fact:

min
Ã|rank(Ã)=k

|A− Ã| = min
Ã|rank(Ã)=k

|Σ− U∗ÃV |

= min
Ã|rank(Ã)=k

|Σ− S|

assuming that Ã has the form Ã = USV ∗, where S is
diagonal. From the rank constraint, i.e., S has k non-zero
diagonal entries, the minimum of the above statement is ob-
tained as follows:

min
Ã|rank(Ã)=k

|Σ− S| = min
si

√√√√ n∑
i=1

(σi − si)2 =

= min
si

√√√√ k∑
i=1

(σi − si)2 +
n∑

i=k+1

σ2
i =

√√√√ n∑
i=k+1

σ2
i

Therefore, Ã of rank k is the best approximation of A in
the Frobenius norm sense when σi = si (i = 1, ..., k) and
the corresponding singular vectors are the same as those of
A. If we choose to discard all but the first k principal compo-
nents, common sense concepts and emotions are represented
by vectors of k coordinates: these coordinates can be seen
as describing concepts in terms of ‘eigenmoods’ that form
the axes of AffectiveSpace, i.e., the basis e0,...,ek−1 of the
vector space. For example, the most significant eigenmood,
e0, represents concepts with positive affective valence. That
is, the larger a concept’s component in the e0 direction is,
the more affectively positive it is likely to be. Concepts with
negative e0 components, then, are likely to have negative af-
fective valence.

Thus, by exploiting the information sharing property of
truncated SVD, concepts with the same affective valence are
likely to have similar features - that is, concepts conveying
the same emotion tend to fall near each other in AffectiveS-
pace. Concept similarity does not depend on their abso-
lute positions in the vector space, but rather on the angle
they make with the origin. For example, we can find con-
cepts such as ‘beautiful day’, ‘birthday party’, ‘laugh’, and
‘make person happy’ very close in direction in the vector
space, while concepts like ‘sick’, ‘feel guilty’, ‘be laid off’,
and ‘shed tear’ are found in a completely different direction
(nearly opposite with respect to the centre of the space).

By reducing the dimensionality of the matrix represen-
tation of A, AffectiveSpace compresses the feature space
of affective common sense knowledge into one that allows
to better gain global insight and human-scale understand-
ing. Compression, in particular, is achieved by balancing
the number of singular values discarded when synthesizing
the vector space, in a way that the affective common sense

knowledge representation is neither too concrete nor too ab-
stract with respect to the detail granularity needed for infer-
ring the cognitive and affective information associated with
opinionated text.

Affective Clustering
The vector space representation of affective common sense
knowledge is clustered using sentic medoids (Cambria et
al. 2011), a technique that adopts a k-medoids approach
(Kaufman and Rousseeuw 1990) to partition the given ob-
servations into k clusters around as many centroids, trying
to minimize a given cost function. Differently from the k-
means algorithm (Hartigan and Wong 1979), which does
not pose constraints on centroids, k-medoids do assume that
centroids must coincide with k observed points.

The most commonly used algorithm for finding the k
medoids is the partitioning around medoids (PAM) algo-
rithm, which determines a medoid for each cluster select-
ing the most centrally located centroid within the cluster.
After selection of medoids, clusters are rearranged so that
each point is grouped with the closest medoid. Since k-
medoids clustering is a NP-hard problem (Garey and John-
son 1979), different approaches based on alternative op-
timization algorithms have been developed, though taking
risk of being trapped around local minima. We use a modi-
fied version of the algorithm recently proposed by Park and
Jun (Park and Jun 2009), which runs similarly to the k-
means clustering algorithm. This has shown to have sim-
ilar performance when compared to PAM algorithm while
taking a significantly reduced computational time. In partic-
ular, we have N concepts (N = 14, 301) encoded as points
x ∈ Rp(p = 50). We want to group them into k clusters and,
in our case, we can fix k = 24 as we are looking for one clus-
ter for each sentic level of the Hourglass of Emotions (Cam-
bria, Livingstone, and Hussain 2012), a novel biologically-
inspired and psychologically-motivated emotion categoriza-
tion model, based on Plutchik’s studies on human emotions
(Plutchik 2001), that can potentially describe any human
emotion in terms of four independent but concomitant di-
mensions, whose different levels of activation make up the
total emotional state of the mind (Fig. 1).

Generally, the initialization of clusters for clustering al-
gorithms is a problematic task as the process often risks to
get stuck into local optimum points, depending on the ini-
tial choice of centroids (Duda and Hart 1973). However,
we decide to use as initial centroids the sentic levels of the
Hourglass, hence, what is usually seen as a limitation of the
algorithm can be seen as advantage for this approach, since
we are not looking for the 24 centroids leading to the best
24 clusters but indeed for the 24 centroids identifying the re-
quired 24 sentic levels. In particular, as the Hourglass affec-
tive dimensions are independent but concomitant, we need
to cluster AffectiveSpace four times, once for each dimen-
sion. According to the Hourglass categorization model, in
fact, each concept can convey, at the same time, more than
one emotion (which is why we get compound emotions) and
this information can be expressed via a sentic vector specify-
ing the concept’s affective valence in terms of Pleasantness,
Attention, Sensitivity, and Aptitude.
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Therefore, given that the distance between two points in

AffectiveSpace is defined as D(a, b) =
√∑p

i=1 (ai − bi)2,
the used algorithm, applied for each of the four affective di-
mensions, can be summarized as follows:

1. Each centroid Cn ∈ R50 (n = 1, 2, ..., k) is set as one of
the six concepts corresponding to each sentic level in the
current affective dimension

2. Assign each record x to a cluster Ξ so that xi ∈ Ξn if
D(xi, Cn) ≤ D(xi, Cm) m = 1, 2, ..., k

3. Find a new centroid C for each cluster Ξ so thatCj = xi if∑
xm∈Ξj

D(xi, xm) ≤
∑

xm∈Ξj
D(xh, xm) ∀xh ∈ Ξj

4. Repeat step 2 and 3 until no changes on centroids are ob-
served

After such clustering process, concepts that are semanti-
cally and affectively related to the input data can be intu-
itively retrieved by analogy and unconsciously crop out to
the C-level.

Conscious Affective Reasoning
U-level and C-level are two conceptual systems that operate
by different rules of inference. While the former operates
emotionally and intuitively, the latter relies on logic and ra-
tionality. In particular, the C-level analyzes issues with ef-
fort, logic, and deliberation rather than relying on intuition.
Hence, while at U-level the vector space representation of
AffectNet is exploited to intuitively guess semantic and af-
fective relations between concepts, at C-level associations
between concepts are made according to the actual connec-
tions between different nodes in the graph representation of
affective common sense knowledge.

Memory, in fact, is not a ‘thing’ that is stored somewhere
in a mental warehouse and can be pulled out and brought to
the fore. Rather, it is a potential for reactivation of a set of
concepts that together constitute a particular meaning. Asso-
ciative memory involves the activation of networks of asso-
ciation – thoughts, feelings, wishes, fears, and perceptions
– that are connected, so that activation of one node in the
network leads to activation of the others (Westen 2002).

Sentic activation aims to implement such process through
the ensemble application of multi-dimensionality reduction
and graph mining techniques. Specifically, the semantically
and affectively related concepts retrieved by means of Af-
fectiveSpace (at U-level) are fed into AffectNet (at C-level),
in order to crawl it according to how such seed concepts are
interconnected to each other and to other concepts in the se-
mantic network.

Spreading Affect
Spreading activation theory uses an associative relevancy
measure over declarative memory by an exponential decay
of activation with distance in the network structure (An-
derson and Pirolli 1984). In particular, we exploit spectral
association (Havasi, Speer, and Holmgren 2010), a tech-
nique that assigns values, or activations, to seed concepts
and spreads their values across the AffectNet graph.

Figure 1: The net of the Hourglass of Emotions

This operation, an approximation of many steps of spread-
ing activation, transfers the most activation to concepts that
are connected to the seed concepts by short paths or many
different paths in affective common sense knowledge. These
related concepts are likely to have similar affective values.

This can be seen as an alternate way of assigning affec-
tive values to all concepts, which simplifies the process by
not relying on an outside resource such as WNA. In partic-
ular, we build a matrix A that relates concepts to other con-
cepts, instead of their features, and add up the scores over
all relations that relate one concept to another, disregarding
direction.

Applying A to a vector containing a single concept
spreads that concept’s value to its connected concepts. Ap-
plying A2 spreads that value to concepts connected by two
links (including back to the concept itself). But what we
would really like is to spread the activation through any
number of links, with diminishing returns, so the operator
we want is:

1 +A+
A2

2!
+
A3

3!
+ ... = eA (1)

We can calculate this odd operator, eA, because we can
factor A. A is already symmetric, so instead of applying
Lanczos’ method to AAT and getting the SVD, we can
apply it directly to A and get the spectral decomposition
A = V ΛV T . As before, we can raise this expression to
any power and cancel everything but the power of Λ. There-
fore, eA = V eΛV T . This simple twist on the SVD lets
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us calculate spreading activation over the whole matrix in-
stantly. As with the SVD, we can truncate these matrices to
k axes and, hence, save space while generalizing from sim-
ilar concepts. We can also rescale the matrix so that activa-
tion values have a maximum of 1 and do not tend to collect in
highly-connected concepts such as ‘person’, by normalizing
the truncated rows of V eΛ/2 to unit vectors, and multiply-
ing that matrix by its transpose to get a rescaled version of
V eΛV T .

Spectral association can spread not only positive, but also
negative activation values. Hence, unconscious reasoning
at U-level is exploited not only to retrieve concepts that are
most semantically and affectively related, but also concepts
that are most likely to be unrelated with the input data (low-
est dot product). While the former are exploited to spread
cognitive and affective energy across the AffectNet graph,
the latter are used to contain such activation in a way that
potentially unrelated concepts (and their twins) do not get
triggered.

Evaluation
The adopted brain-inspired ensemble application of dimen-
sionality reduction and graph mining techniques (to which
we hereby refer as unconscious and conscious reasoning, re-
spectively) allows sentic activation to more efficiently infer
the cognitive and affective information associated with nat-
ural language text. In fact, we tested sentic activation on a
benchmark for affective common sense knowledge (BACK)
built by applying CF-IOF (concept frequency - inverse opin-
ion frequency), a technique similar to TF-IDF, on a 5,000
blogpost database extracted from LiveJournal1, a virtual
community of users who keep a blog, journal, or diary.

An interesting feature of this website is that bloggers
are allowed to label their posts with both a category and
a mood tag, by choosing from predefined categories and
mood themes or by creating new ones. Since the indication
of mood tags is optional, posts are likely to reflect the true
mood of the authors, which is not always true for category
tags. After a manual evaluation of 200 posts, the category
tags turned out to be very noisy (53% accuracy).

The mood tags, however, showed a good enough relia-
bility (78% accuracy) so we used them to test the engine’s
affect recognition performances. In order to have full cor-
respondence between LiveJournal mood labels and the acti-
vation levels of the Hourglass model, a number of English-
speaking students has been asked to map each of the 130
mood labels into the 24 emotional labels of the Hourglass
model. A set of 80 moods (those with higher confidence
level) were selected for inclusion in the blogpost database.
CF-IOF identifies common domain-dependent semantics in
order to evaluate how important a concept is to a set of opin-
ions concerning the same topic.

Firstly, the frequency of a concept c for a given domain d
is calculated by counting the occurrences of the concept c in
the set of available d-tagged opinions and dividing the result
by the sum of number of occurrences of all concepts in the
set of opinions concerning d.

1http://livejournal.com

Level Label Frequency
-G(1) grief 14.3%

-G(2/3) sadness 19.8%
-G(1/3) pensiveness 11.4%

0 neutral 10.5%
+G(1/3) serenity 20.6%
+G(2/3) joy 18.3%
+G(1) ecstasy 5.1%

Table 1: Distribution of Pleasantness sentic levels.

This frequency is then multiplied by the logarithm of the
inverse frequency of the concept in the whole collection of
opinions, that is:

CF -IOFc,d =
nc,d∑
k nk,d

log
∑
k

nk
nc

(2)

where nc,d is the number of occurrences of concept c in
the set of opinions tagged as d, nk is the total number of
concept occurrences, and nc is the number of occurrences
of c in the whole set of opinions. A high weight in CF-IOF
is reached by a high concept frequency in a given domain
and a low frequency of the concept in the whole collection
of opinions. Specifically, we exploited CF-IOF weighting
to filter out common concepts in the LiveJournal corpus and
detect relevant mood-dependent semantics for each of the
Hourglass sentic levels.

The result was a benchmark of 2000 affective concepts
that were screened by 21 English-speaking students who
were asked to evaluate the level b associated to each concept
b ∈ Θ = {θ ∈ Z | −1 ≤ θ ≤ 1} (each integer corre-
sponding to a level of the Hourglass model) for each of the
four affective dimensions. Results obtained were averaged
(Table 1). BACK’s concepts were compared with the clas-
sification results obtained by applying the AffectiveSpace
process (U-level), spectral association (C-level), and sentic
activation (U&C-level). Results showed that sentic activa-
tion achieves +13.9% and +8.2% accuracy than the Affec-
tiveSpace process and spectral association, respectively.

Brain-Inspired Sentiment Analysis
In order to test sentic activation also within a real-world
problem, we developed a brain-inspired software engine for
sentiment analysis. This software engine consists of four
main components: a pre-processing module, which per-
forms a first skim of text, a semantic parser, whose aim is
to extract concepts from the opinionated text, a target spot-
ting module, which identifies sentiment targets, and an affect
interpreter, for emotion recognition and polarity detection.
The pre-processing module firstly interprets all the affective
valence indicators usually contained in opinionated text such
as special punctuation, complete upper-case words, cross-
linguistic onomatopoeias, exclamation words, negations, de-
gree adverbs, and emoticons.

Secondly, it converts text to lower-case and, after lem-
matizing it, splits the opinion into single clauses according
to grammatical conjunctions and punctuation. Then, the se-
mantic parser deconstructs text into concepts using a lexicon
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based on sequences of lexemes that represent multiple-word
concepts extracted from AffectNet. These n-grams are not
used blindly as fixed word patterns but exploited as reference
for the module, in order to extract multiple-word concepts
from information-rich sentences. So, differently from other
shallow parsers, the module can recognize complex concepts
also when these are interspersed with adjective and adverbs,
e.g., the concept ‘buy christmas present’ in the sentence “I
bought a lot of very nice Christmas presents”.

The target spotting module aims to individuate one or
more sentiment targets, such as people, places, events, and
ideas, from the input concepts. This is done by projecting
the retrieved concepts into both the graph and the vector
space representation of AffectNet, in order to assign these
to a specific conceptual class. The categorization does not
consist in simply labeling each concept but also in assigning
a confidence score to each category label, which is directly
proportional to the value of belonging to a specific concep-
tual cluster (number of steps in the graph and dot product in
the vector space). The affect interpreter, similarly, projects
the retrieved concepts into the vector space representation
of AffectNet, in order to assign these to a specific affective
class, and therefore calculates polarity in terms of the Hour-
glass dimensions.

As an example of how the software engine works, we can
examine intermediate and final outputs obtained when a nat-
ural language opinion is given as input to the system. We
choose the tweet “I think iPhone4 is the top of the heap!
OK, the speaker is not the best i hv ever seen bt touchscreen
really puts me on cloud 9... camera looks pretty good too!”.
After the pre-processing and semantic parsing operations,
we obtain the following small bag of concepts (SBoCs):

SBoC#1:
<Concept: ‘think’>
<Concept: ‘iphone4’>
<Concept: ‘top heap’>

SBoC#2:
<Concept: ‘ok’>
<Concept: ‘speaker’>
<Concept: !‘good’++>
<Concept: ‘see’>

SBoC#3:
<Concept: ‘touchscreen’>
<Concept: ‘put cloud nine’++>

SBoC#4:
<Concept: ‘camera’>
<Concept: ‘look good’−−>

These are then concurrently processed by the target spot-
ting module and the affect interpreter, which detect the opin-
ion targets and output, for each of them, the relative affective
information both in a discrete way, with one or more emo-
tional labels, and in a dimensional way, with a polarity value
∈ [-1,+1] (as shown in Table 2).

System Comparison
In order to evaluate the different facets of the engine from
different perspectives, we used a PatientOpinion2 dataset,

2http://patientopinion.org.uk

Target Category Moods Polarity
‘iphone4’ ‘phones’,

‘electronics’
‘ecstasy’,
‘interest’

+0.71

‘speaker’ ‘electronics’,
‘music’

‘annoyance’ -0.34

‘touch-
screen’

‘electronics’ ‘ecstasy’,
‘anticipation’

+0.82

‘camera’ ‘photography’,
‘electronics’

‘acceptance’ +0.56

Table 2: Structured output example of the engine

and compared results obtained using AffectiveSpace (U-
level), spectral association (C-level), and sentic activation
(U&C-level). The resource is a dataset obtained from Pa-
tientOpinion, a social enterprise pioneering an on-line feed-
back service for users of the UK national health service
to enable people to share their recent experience of local
health services on-line. It is a manually tagged dataset of
2,000 patient opinions that associates to each post a cate-
gory (namely, clinical service, communication, food, park-
ing, staff, and timeliness) and a positive or negative polarity.
We used it to test the detection of opinion targets and the po-
larity associated with these (F-measure values are reported
in Table 3).

Category U-Level C-Level U&C-Level
clinical service 62.4% 71.5% 82.4%
communication 62.3% 59.8% 79.1%

food 70.7% 69.6% 81.7%
parking 56.3% 53.7% 77.2%

staff 58.5% 49.2% 73.8%
timeliness 69.2% 61.9% 80.6%

Table 3: F-measures relative to PatientOpinion evaluation.

Conclusions
Current thinking in psychology ascribes the involvement of
multiple concurrent levels of processing, much of which is
below consciousness, to human reasoning. In this paper,
we proposed a brain-inspired computational model for con-
scious and unconscious affective common sense reasoning.
In particular, we explored the ensemble application of multi-
dimensionality reduction and graph mining techniques on an
affective common sense knowledge base to go beyond mere
word-level sentiment analysis.

In the future, novel multi-dimensionality reduction and
graph mining techniques will be explored in order to dy-
namically configure AffectNet and, hence, model the switch
between different reasoning strategies and between the foci
around which such strategies are developed (Cambria, Ol-
sher, and Kwok 2012).
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