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Abstract
Commonsense knowledge acquisition and representation is a core topic in artificial intelligence (AI), which is crucial for
building more sophisticated and human-like AI systems. However, existing commonsense knowledge bases organize facts in
an isolated manner like bag of facts, lacking the cognitive-level connections that humans commonly possess. People have the
ability to efficiently organize vast amounts of knowledge by linking or generalizing concepts using a limited set of conceptual
primitives that serve as the fundamental building blocks of reasoning. These conceptual primitives are basic, foundational
elements of thought that humans use to make sense of the world. By combining and recombining these primitives, people
can construct complex ideas, solve problems, and understand new concepts. To emulate this cognitive mechanism, we design
a new commonsense knowledge base, termed PrimeNet, organized in a three-layer structure: a small core of conceptual
primitives (e.g., FOOD), a bigger set of concepts that connect to such primitives (e.g., fruit), and an even larger layer
of entities connecting to the concepts (e.g., banana). First, we collect commonsense knowledge and employ a gradual
expansion strategy for knowledge integration. After refinement, PrimeNet contains 6 million edges between 2 million nodes,
with 34 different types of relations. Then, we design a new conceptualization method by leveraging a probabilistic taxonomy,
to build the concept layer of PrimeNet. Finally, we conduct primitive detection to build the primitive layer, where a lexical
substitution task is used to identify related concepts, and large language models are employed to generate a rational primitive
to label each concept cluster as well as verify the primitive detection process.

Keywords Commonsense acquisition · Knowledge representation and reasoning · Conceptual primitives

Introduction

Commonsense knowledge refers to the information about
everyday life that humans are expected to know, such as
painters use pencils and animals don’t drive cars. This kind
of knowledge is usually taken for granted in human commu-
nication and reasoning, even though it may not be explicitly
stated [1]. However, machines lack access to this innate com-
monsense knowledge, which often results in their inferior
performance in simple reasoning tasks. As mentioned by
Oren Etzioni, commonsense is “the dark matter” of AI: it
shapes so much of what we do and what we need to do,
and yet it’s ineffable. To address this limitation, researchers
have dedicated significant effort to construct diverse com-
monsense knowledge bases like Cyc [2], FrameNet [3],
ConceptNet [4], TransOMCS [5], ATOMIC [6], CSKG [7],
and VoCSK [8]. These knowledge bases are compiled from
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diverse sources (e.g., encyclopedias, crowdsourcing, and
expert annotations), aiming to empower machines with
access to commonsense knowledge and enhance the rea-
soning abilities of AI systems. Despite advancements in
existing knowledge bases, the reasoning capabilities of AI
systems remain unsatisfactory [9]. One notable limitation is
that current knowledge bases often organize facts in amanner
resembling a “millions of facts,” lacking the cognitive-
level connections inherent in human understanding.Humans,
on the other hand, exhibit the ability to efficiently orga-
nize extensive amounts of knowledge. This capability goes
beyond mere accumulation of facts and involves the intricate
weaving of cognitive-level connections, enabling a deeper
andmore nuanced comprehension of the information at hand.
We have two observations for human-like knowledge orga-
nization.

Firstly, individuals are able to function well in most
real-world situations using a much smaller set of concepts,
as opposed to dealing with an exhaustive list of specific
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entities. For example, humans generally describe common-
sense knowledge like hammer can be used to drive nails
into wood, as illustrated in Fig. 1. In this example, the more
general concepts such as hammer, nail, and wood are used
for the description, rather than getting into overly specific
terms like engineering hammer or rubber hammer. From
estimates of effective vocabulary, the number of words that
people need in order to understand 95% of everyday texts
is around 3000 words, and the average size of American
freshman college students’ vocabulary has been estimated at
about 12,000 words [10]. This underscores the human abil-
ity to distill extensive information into manageable concepts,
facilitating amore streamlined expression and understanding
of daily experiences.

Secondly, human cognition relies on a small set of fun-
damental and innate building blocks called primitives. In
the conceptual dependency theory [11–15], primitives serve
as elemental units of information and actions, like COLOR,
SHAPE, SIZE, INCREASE, and DECREASE, and forms the
foundation for humans to make generalizations, inferences,
and predictions, ultimately facilitating efficient reasoning
and understanding in a wide range of real-world situations.
For example, we generalize concepts with relevant higher-
level primitives. Verb concepts such as eat, slurp, and munch
could be related to a primitive EAT. Noun concepts like
pasta, bread, and milk can be associated with the primitive
FOOD. Therefore, eat pasta or slurp milk can be generalized
into a primitive-level description, i.e., EAT FOOD. Hierar-
chical concept representations have significant applications
in diverse domains, e.g., conceptual metaphor understand-
ing [16, 17] and cognitive analysis [18].

In history, some efforts have been devoted to building
knowledge bases more in line with human cognition. For
example, VoCSK [8] is designed to exploit concept-level
knowledge representation for implicit verb-oriented com-
monsense knowledge (e.g., person eats food instead of
John eats bread). SenticNet [19] is developed for orga-
nizing sentiment knowledge with a core set of primitives.
ASER [20] (short for Activities, States, Events, and their
Relations) is built to extend the traditional definition of
selectional preference to higher-order selectional preference
over eventualities. These methods share a common goal of
conceptualizing diverse types of commonsense knowledge,
mapping them to higher-level cognition, and moving beyond
the explicit representation of knowledge as discrete facts.

Following this line, we take a further step by constructing a
new framework for representing the intricate commonsense
knowledge based on conceptual dependency theory.

In this work, we propose a new framework for com-
monsense knowledge representation and reasoning based
on conceptual primitives, named PrimeNet. The data and
the code used to develop PrimeNet are available on Sen-
ticNet github (https://github.com/senticnet/primenet). Addi-
tionally, PrimeNet is also available as an API for verb-noun
generalization (https://sentic.net/api/primenet) and as a set
of embeddings for aspect-based sentiment analysis available
in 80 different languages (https://sentic.net/downloads). The
PrimeNet framework consists of three layers, as illustrated
in Fig. 2:

• Primitive: The primitive layer comprises fundamental
and universal elements that act as the building blocks
of cognition. These primitives form the foundation upon
which the entire knowledge representation is constructed.
Examples of basic primitives include COLOR, SHAPE,
SIZE, OBJECT, TOOL, INCREASE, DECREASE, and
others. These primitives are essential for understanding
and reasoning about the world.

• Concept: The concept layer is commonly used mental
representations of categories or classes of objects, ideas,
or events that share common features or characteristics.
For example, concepts like hammer and nail fall into this
layer. They allow for efficient information organization
and grouping based on shared attributes.

• Entity: The entity layer represents specific instances or
examples of concepts. For example, given the concept
hammer, specific entities include brick_hammer, rub-
ber_hammer, and engineer_hammer. This layer enables
a more specific representation of knowledge, capturing
individual objects or instances in the real world.

We begin by gathering extensive commonsense knowl-
edge from diverse sources and integrate it to form a raw
knowledge graph (Fig. 3). Unlike a simple aggregation of
facts, we adopt a gradual expansion approach. Initially, we
construct the graph with core concepts and relation types,
systematically expanding it by adding more specific entities
and incorporating diverse relation types. In the next stage,
we establish the conceptual layer of PrimeNet, by assessing
the abstractness of all nodes using a new scoring function

Fig. 1 Example of the description of commonsense knowledge with concepts (e.g., hammer, nail, and wood), instead of specific entities (e.g.,
claw_hammer) or abstract primitives (e.g., tool)
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Fig. 2 Illustration of three-layer structure in PrimeNet. Given the
factual knowledge, a concept layer is generated as the basic level,
comprising widely recognized mental representations associated with
various categories or classes of objects. Its subordinate layer is termed

as entity layer, which consists of specific entities, and its superordi-
nate layer is defined as primitive level, encapsulating overarching and
fundamental primitives

tailored for conceptualization. We leverage the probabilis-
tic taxonomy Probase [21] to identify the abstract concepts,
and our scoring method centers around core words rather
than the peripheral leaves [8, 22]. Then, we perform prim-
itive detection on the concepts to build the primitive layer
of PrimeNet. Formulating a thorough primitive set demands
considerable time and effort. To address this, we design a lex-
ical substitution task to discover the set of primitives. This is
grounded in the assumption that within a shared context, the
associated concepts under a primitive canbe seamlessly inter-
changed, resulting in grammatically accurate sentences upon
substitution. To allocate a representative primitive to each
concept cluster, we leverage large language models (LLMs)
to generate the primitive and employ an LLM-based verifier
to validate the assignment of the primitive to concepts.

Moreover, we manually check the primitives, refine the
hierarchy structure of the primitives, and generate the expla-
nation of primitives. For example, DEACTIVATE is defined
as change the status from on to off, i.e., STATE=ON →
STATE=OFF. In Table 1, we present several cases of verb
primitives used in PrimeNet. This strategy of constructing
a primitive layer balances the need for human hand-coding

Fig. 3 PrimeNet preliminary knowledge graph. The initial knowl-
edge graph collects all natural language relationships (edges) between
concepts (nodes) found in the training data. After several rounds of
normalization, the final PrimeNet graph only leverages 34 relationships

for accuracy with that for crowdsourcing and machine-based
knowledge extraction for coverage.

The contribution of this work is summarized as follows.

1. Representation of commonsense knowledge based on
conceptual primitives. We propose a multi-layer com-
monsense knowledge base based on conceptual primi-
tives under the hypothesize that commonsense reasoning
could depend on a concise core of concepts. To the best
of our knowledge, this is the first work incorporating the
idea of conceptual primitives into a general-purpose com-
monsense knowledge base to provide a generalizable,
effective representation of commonsense knowledge for
AI tasks.

2. Construction of a new commonsense knowledge base
PrimeNet. Based on the designed multi-layer structure,
we construct a brand new commonsense knowledge base.
We first collect commonsense knowledge from various
sources and perform knowledge integration to build a
knowledge graph.

3. Conceptualization forPrimeNet.Wedesign a new scor-
ing method to measure the abstractness of a term for
conceptualization, according to the conditional proba-
bility and connections to core words. Compared with
previousmethods, our method centers around core words
rather than the peripheral leaves, which is effective in
measuring the abstractness of concepts.

4. Primitive Detection for PrimeNet. We design a new
primitive detection method to build the primitive layer.
We employ a lexical substitution task to discover related
concepts under the assumption that they share a similar
context. For the clusters of related concepts, we leverage
LLMs to label their primitives and verify the detection
process.

The rest of this paper is organized as follows: Sec-
tion “Background” introduces conceptual primitive theory
and the challenges of building a commonsense knowledge
base; Section “Overall Framework” describes the over-
all framework; Section “Knowledge Graph Construction”
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Table 1 Examples of verb primitives in PrimeNet

Input string Verb primitives Primitive-level representation and explanation

Turn off light Turn off → DEACTIVATE DEACTIVATE(light) Light.STATE=ON → light.STATE
= OFF

Add salary Add → INCREASE INCREASE(salary) Salary → salary++

Cut budget Cut → DECREASE DECREASE(budget) Budget → budget−−
Drive car Drive → ACCELERATE ACCELERATE(car) INCREASE(car.SPEED):=

car.SPEED++

Build house Build → GENERATE GENERATE(house) � house → ∃ house

Butcher chickens Butcher → KILL KILL(chicken) TERMINATE(LIFE(chicken))

Revise the manuscript Revise → FIX Fix(manuscript) Manuscript.STATE=BAD →
Manuscript.STATE=GOOD

Illuminate the idea Illuminate → SIMPLIFY SIMPLIFY(idea) Idea.STATE=DIFFICULT →
Idea.STATE=EASY

Given the input string, we illustrate the detected verb primitives, and its primitive-level representation and explanation. Primitives are marked in
green

explains the steps for PrimeNet’s initial knowledge graph
construction; Section “Concept Detection” illustrates how
the concept layer of PrimeNet is built; Section “Primi-
tive Discovery” introduces the primitive detection algo-
rithm for building the primitive layer of PrimeNet; Sec-
tion “Experiments” reports experiments; Section “Related
Works” surveys existing commonsense knowledge bases;
Section “Future Directions” discusses future work; finally,
Section “Conclusion” provides concluding remarks.

Background

Theory of Conceptual Primitive

In linguistics and cognitive science, conceptual primitive
commonly refers to a basic, irreducible concept or idea that
serves as a foundation for understanding more complex con-
cepts. Conceptual primitives are fundamental elements that
are not further defined in terms of other concepts but are
instead used to define other, more complex ideas. They are
often considered to be the building blocks of thought and
language. The exploration of conceptual primitives has a
rich history within linguistics. In the 1950s, Chomsky [23]
introduced the universal grammar theory, positing innate
linguistic structures as foundational conceptual primitives.
According to this theory, humans inherently possess the
capacity to acquire language, with universal linguistic struc-
tures serving as fundamental building blocks shared across
all languages. The conceptual dependency theory, put forth
by Schank [14], suggested that the basis of natural language
is conceptual, forming an interlingual foundation composed
of shared concepts and relationships across languages. Jack-
endoff [11] delved into explanatory semantic representation,

asserting the existence of semantic primitives common to
all languages, enabling humans to express a diverse range
of semantic information. Wierzbicka [15] emphasized that
“conceptual primitives and semantic universals are the cor-
nerstones of a semantic theory,” asserting that this limited set
of primitives can determine interpretations for all lexical and
grammatical meanings in natural language. These theories
collectively aim to identify a core set of fundamental primi-
tives for language, facilitating the description of lexicalized
concepts.

In the realm of cognitive science, theoretical studies on
commonsense knowledge representation align with simi-
lar insights. Jackendoff et al. [24] highlighted a strong
correlation between semantic primitives and cognitive rep-
resentation. According to Pesina and Solonchak [25], the
primitives studied in linguistics form the basis for the forma-
tion of a person’s conceptual system, which is both unique
and universal inmany aspects. In this view, language emerges
as a central tool for cognitive functions, including con-
ceptualization and categorization. In the development of
knowledge representation theories in cognitive science,many
have been based on the idea that humans possess a core
set of knowledge connecting a vast array of specific knowl-
edge. In the early stages, Minsky [12] studied the framework
for knowledge representation and introduced the concept of
“frames” as a structured way to organize information about
situations or objects. He proposed that humanswhen encoun-
tering new situations, retrieve typical knowledge from their
minds. Piaget et al. [26] introduced the term “schema,” rep-
resenting both the category of knowledge and the process
of acquiring that knowledge. The knowledge representa-
tion based on schema has also been further researched by
Rumelhart and Ortony [13], Winograd [27], Bobrow and
Norman [28], Johnson [29] and others. Spelke and Kinzler
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[30] introduced the core knowledge theory, suggesting that
infants are born with “core knowledge systems” supporting
basic intuitions about the world. West [31] introduced a data
modeling structure divided into primitive and derived con-
cepts, with primitive concepts serving as building blocks for
other concepts. These theories collectively underscore that
the core primitive set constitutes the fundamental structure
of human cognition and provides guidance for knowledge
representation.

Challenges

In modern large-scale commonsense knowledge bases, there
have been relatively few attempts to build a knowledge base
in a way incorporating core primitives based on conceptual
dependency theory and linking a vast amount of facts. Cam-
bria et al. [19] has developed a sentiment analysis system
based on primitives such as DECREASE and INCREASE
aimed at generalizing sentences into a sort of protolan-
guage in which it is easier to perform polarity detection,
e.g., the sentence “the device’s temperature sky rocketed”
is first generalized to “INCREASE(device.temperature)” and
then later transformed into “device.temperature++”
(Fig. 4). Wachowiak and Gromann [32] proposed to build on
large multilingual pre-trained language models and a small
dataset of examples from image schema literature to train a
supervised classifier that classifies natural language expres-
sions of varying lengths into image schemas. Liu et al. [8]
designed conceptualization for verbs and built a knowledge
base with conceptual verb-oriented knowledge to represent
various instances, e.g., “John eat apple” and “Helen eat
bread” are represented as “people eat food.”

The primary challenge hindering progress in this field
stems from the complexity of constructing a comprehen-
sive set of core primitives to encompass extensive knowl-
edge across diverse domains. On the one hand, managing

large-scale factual data makes manual editing and mainte-
nance of a core primitive set impractical. While it is possible
to manually craft a small, high-quality core primitive set,
this approach becomes intricate when using primitives to
interpret other specific concepts, and its coverage of spe-
cific knowledge is limited. On the other hand, primitives are
not fixed but rather flexible and adaptable. The core primi-
tives are deeply embedded in the human conceptual system,
which is both unique and universal in many aspects. The
proposed number of semantic primitives varies significantly,
ranging from a few units in some studies [15, 24] to sev-
eral dozens [15] or even hundreds [19] in others. Pesina and
Solonchak [25] stated that the main concepts of human soci-
ety remain relatively stable, but their overall volume changes
over time.

Overall Framework

In this section, we first introduce the task definition. Then,
we introduce the solution of constructing PrimeNet and the
key ideas of each module.

Task Definition

PrimeNet is a hybrid graph H combining a traditional graph
G where each edge is built among nodes to represent com-
monsense knowledge in triplets, and a hypergraph G∗ where
each edge is built over the nodes to linked their concepts and
primitives. For example, in the graph G , its edge is repre-
sented as a triplet like (corgi, isA, dog), where dog and corgi
are nodes, and isA is a relation type. In the hypergraph G∗,
corgi is linked to dog in the concept layer, and dog is linked
to ANIMAL in the primitive layer. We devise the formal def-
inition of PrimeNet as below.

Fig. 4 Example of
generalization of sentences into
a more abstract, conceptual form
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Definition 1 (PrimeNet) PrimeNet is a hybrid graph H of
a knowledge graph G and a hypergraph G∗. The knowledge
graph is denoted asG = {V , E,R}whereV is a node set, E is
an edge set connecting pairs of nodes, andR is the set of dis-
tinct relation types associated with the edges in E . Each node
v ∈ V is a term. Each edge e ∈ E is a triplet (vi , r , v j )where
vi and v j are the connected nodes, and r ∈ R is the relation
type. The hypergraph is denoted as G∗ = {V , C ,P,M},
where V represents the set of entities, C represents the set
of concepts, and P represents the set of primitives. The
hyperedge setM = {Mv→c,Mc→p} contains two types of
hyperedges. The hyperedge (v, c) ∈ Mv→c links the entity
v ∈ V to its concept c ∈ C , and the hyperedge (c,p) ∈
Mc→p links the concept c ∈ C to its primitive p ∈ C . Over-
all, we have the PrimeNet H = {V , E,R, C ,P,M}.

Overall Framework of PrimeNet Construction

The solution of PrimeNet mainly consists of three mod-
ules. The first module is to construct the knowledge graph
G = {V , E,R} to organize the large-scale commonsense
knowledge.This knowledgegraph is designed to cover awide
range of commonsense knowledge, encompassing specific
entities and extensive information. We refer to this graph as
the entity layer of PrimeNet. The secondmodule is a concep-
tualizationmodule, which identifies a small set of concepts C
on topof the set of specific entitiesE inG , aswell as the hyper-
edges Mv→c to link entities to concepts. We consider this
concept set and themapping between concepts and entities as
the concept layer of PrimeNet. The third module is a primi-
tive detection module that constructs the core primitive setP
on top of the concept set C and builds the hyperedgesMc→p

to link concepts to their primitives. This small primitive set
and the mapping between primitives and concepts are used
as the primitive layer of PrimeNet. In the following, we will
provide a more in-depth introduction to each module, along
with corresponding examples for illustration.

Module-1: Knowledge Graph Construction
Over the course of many years, a vast reservoir of factual
knowledge has accumulated, taking on various forms and
originating from diverse sources. In order to systematically
organize this wealth of knowledge, we have undertaken the
construction of a knowledge graph.Drawing inspiration from
the theory of cognitive development put forth by Piaget et al.
[26], which posits that human cognitive development occurs
in stages, we have adopted a gradual expansion strategy to
build our knowledge repository. Rather than merging dis-
parate sources abruptly, our approach is to delicately expand
the knowledge base.

The fundamental idea underlying our strategy is that
humanknowledge acquisition follows apattern of continuous
expansion, rooted in commonly shared and widely accepted

information. For instance, individuals typically begin by
learning that a “hammer” is a “tool” used for driving “nails,”
and subsequently delve into more intricate details, such as
discerning the differences among various types of hammers
like “engineer hammer” and“brick hammer.” To emulate this
cognitive process,we initially construct a basic graph consist-
ing ofwidely used concepts and relations as the entity layer of
PrimeNet. Subsequently,we systematically enlarge the graph
by incorporating a multitude of facts from diverse sources.
This method allows for the gradual incorporation of informa-
tion, mirroring the incremental nature of human knowledge
acquisition. We detail this module in Section “Knowledge
Graph Construction.”

Module-2: Concept Detection
To construct the concept layer over the knowledge graph
G , this module focuses on identifying a suitable concept
set C from the node set V and establishing hyperedges in
the set Mv→c to link entities with their respective con-
cepts. Within PrimeNet, this concept layer encapsulates
commonlyusedmental representations of categories, classes,
or ideas that share common features or characteristics. For
instance, “hammer” is the concept that represents a category
encompassing entities such as “engineering hammer,” “brick
hammer,” and “rubber hammer.” Consequently, we initialize
the concept set layer using Core WordNet,1 a compilation
of approximately 5000 of the most commonly used words
meticulously curated by experts. Then, we design a concept
detection method to discover new concepts and expand the
concept set, leveraging a large-scale probabilistic taxonomy,
i.e., Probase [21], and build the edges to link entities to the
detected concepts.

Specifically, Probase encompasses 33.4million isA triples
between 2.7 million concepts, automatically extracted from
1.68 billion web pages, with each triplet associated with
a frequency score. Our observation underscores that, for a
concept, its hyponyms tend to establish robust connections
with diverse concepts in a probabilistic taxonomy, whereas
a specific entity is more concentrated in its connection to
concepts. To capture this regularity, we introduce a novel
scoring function designed to identify whether a term quali-
fies as a concept. In contrast to alternative conceptualization
methods, our approach stands out by centering around core
words rather than initiating from the leaves of an extensive
taxonomy for concept detection. The pre-defined core words
enhance diversity and accuracy, distinguishing our strategy
as effective in steering clear of misleading information stem-
ming from isolated graphs or incorrect circles within the
large-scale taxonomy.

1 Please find more details from https://wordnet.princeton.edu/. Core
WordNet is available in https://wordnetcode.princeton.edu/glosstag.
shtml.
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Module-3: Primitive Discovery
This module is dedicated to constructing the primitive layer
of PrimeNet, involving the establishment of a core primitive
setP and the creation of the hyperedge setMc→p to connect
concepts with their higher-level primitives. For instance, the
primitive INCREASE is associated with concepts like ramp
up, go up, broaden, step up, elevate, supplement, redouble,
pile up, upward spiral, distend, and more. The manual def-
inition of the primitive set and linking of primitives to their
lower-level concepts is impractical. In our approach, an auto-
mated method is designed, utilizing concept clustering and
subsequent labeling of their primitives using large language
models, followed by error checking to refine both the primi-
tives and concept clusters.

Specifically, it is observed that concepts under the same
primitive often share a similar meaning and context. For
instance, elongate and stretch fall under the same primitive
GROW and share a similar context. Although intuitive, lexi-
cal substitution tends to overlook crucial differences between
concepts. For example, verbs such as stretch and compress
belong to opposite primitives, GROW and SHRINK respec-
tively, yet can be identified within similar lexical contexts.
To address this issue, we leverage powerful LLMs to filter
out incorrect concepts within each cluster, generating a prim-
itive that accurately describes the concept cluster. Manual
checks are also employed to ensure the quality of primi-
tives in building the primitive layer. This strategy strikes
a balance between human hand-coding for accuracy and
crowdsourcing and machine-based knowledge extraction for
comprehensive coverage.

Knowledge Graph Construction

In this section, we detail the construction of the knowl-
edge graph (G) of PrimeNet. It mainly contains four stages.
First, commonsense knowledge acquisition is to collect high-
quality knowledge from diverse sources which are created
through manually annotated or crowdsourcing. Then, knowl-
edge integration is to map the nodes and relations among
different sources. Next, the graph construction is to organize
the knowledge in a graph. Finally, exploration is to define
functions to leverage the knowledge graph in the downstream
tasks. We detail each stage as follows.

Commonsense Knowledge Acquisition

In constructing a commonsense knowledge base, the acqui-
sition of knowledge stands out as a pivotal initial phase.
Collecting commonsense knowledge is a challenging task
due to its sheer volume, implicit nature, and diverse forms
of expression. With decades of human efforts, a wealth of

commonsense knowledge has been amassed and stored in
various knowledge bases. To ensure quality, in this work, we
extract knowledge from expert-crafted databases and crowd-
sourced repositories, as summarized in Table 2, including:

• Lexical knowledge extracted from WordNet [33],
FrameNet [3], and Roget [34].

• Factual knowledge extracted from ConceptNet2 [4],
which is a commonsense knowledge that represents gen-
eral knowledge and commonsense relationships between
concepts.

• Structured information in Wikidata and DBpedia. For
DBpedia3 [35], we extract knowledge from InfoBoxes
which provide information about a wide variety of top-
ics, e.g., people, places, and organizations, as well as
knowledge from InstanceTypes which contains instances
of 438 types, e.g., book, company, city, and plant.

• Task-specific knowledge, such as inferential knowledge
extracted from ATOMIC [6, 36] which is organized
as typed “if-then” relations with variables, and visual
knowledge extracted from Visual Genome [37].

Knowledge Integration

In commonsense knowledge graph construction, multiple
sources can provide complementary knowledge of different
types. However, the integration of knowledge from diverse
sources is impeded by the varying representation formats.
It is noted that many databases provide mappings to other
databases, e.g., ConceptNet contains mappings to DBpe-
dia, WordNet, Wikidata, and FrameNet. Yet, these mappings
may be incomplete. Recent research endeavors to create
high-quality mappings among different knowledge bases,
offering a pathway for knowledge integration. For exam-
ple, CommonSense Knowledge Graph (CSKG) [7] construct
mappings across seven knowledge bases (i.e., ATOMIC,
ConceptNet, FrameNet, Roget, Visual Genome, Wikidata,
and WordNet). We conduct knowledge integration to build a
knowledge graph of PrimeNet using these high-quality map-
pings, as well as lexical-level and semantic-level matching
methods. Table 3 summarizes the details of our integration
process.

First, we process the individual sources.More specifically,
we keep the initial sets of nodes, edges, and relations in Con-
ceptNet and ATOMIC. For other sources, we extract their
nodes and edges and convert their relations to the format of
relations in ConceptNet, as detailed in Table 3. Then, we con-
duct mappings between sources for node resolution. On the

2 We use the ConceptNet version 5.7.0, which is available at https://
github.com/commonsense/conceptnet5/wiki/Downloads.
3 We use the DBpedia version 2022.09.01, which is available at https://
www.dbpedia.org/resources/.
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Table 2 Sources of commonsense knowledge for building the knowledge graph of PrimeNet

Source Creation # R Size Example

WordNet Manual 10 155K words, 176K synsets (denied, morphy, deny)

FrameNet Manual 10 1.2K frames, 12K roles, 1.9K edges (Criminal_process, Subframe,
Arrest)

Roget Manual 2 72k words, 1.4M edges (explore, Synonym, investigate)

ConceptNet Crowdsourcing 34 8M nodes, 21M edges (keyboard, part of, computer)

Wikidata Crowdsourcing 6.7K 75M objects, 900M edges (George Washington, isInstanceOf,
human)

DBpedia Crowdsourcing 53.1K 4.8M nodes, 62M edges (Applied_Artificial_Intelligence,
discipline, Artificial_intelligence)

ATOMIC Crowdsourcing 9 300K nodes, 877K edges (PersonX bakes bread, Before X
needed to, buy the ingredients)

Visual Genome Crowdsourcing 42.4K 3.8M nodes, 2.3M edges, 2.8M attributes (man, sit on, bench)

Creation denotes the construction methods, # R denotes the number of relation types, and Size denotes the graph scale

one hand, we leverage mappings released by Ilievski et al.
[7]4 to map nodes from different sources. On the other hand,
we represent each node using its label and use exact lexical
matching to establish the mappings of nodes from different
sources. Moreover, we conduct semantic-level matching to
identify the same nodes with different labels.

We convert all labels of nodes to embeddings using pre-
trained Sentence-BERT [38].5 Subsequently, we employ the
labels of nodes from another source as queries and perform
embedding-based semantic search. The cosine similarity
metric is employed to measure semantic similarities between
two nodes. We establish a link between the query and its top-
1 similar node if they share the same representation after
lexical tokenization using NLTK.6

Graph Construction

Confronted with an extensive dataset of knowledge triplets,
creating a graph by incorporating all of them directly is a
blunt method. Humans develop core conceptual primitives
grounded in the most frequently utilized knowledge. For
example, in the realm of geography, individuals effortlessly
understand fundamental concepts like country, continent,
and ocean, forming a foundational understandingwithout the
need tomemorize every specific detail, including aspects like
the area and visual representation of each country available
in DBpedia and Visual Genome, respectively. This insight
guides our approach to graph construction through a gradual

4 The project description and mappings are available on https://github.
com/usc-isi-i2/cskg. Please refer to o Ilievski et al. [7] for more details
on processing individual sources, performing node resolution, and con-
structing mappings.
5 Used version: https://huggingface.co/sentence-transformers/all-
mpnet-base-v2.
6 https://www.nltk.org/

expansion strategy. We illustrate the construction process in
Fig. 5.

Initially, we start from core nodes and relations to con-
struct a new knowledge graph. For core nodes, Core Word-
Net7, which contains the most frequently used 5000 words,
i.e., 3300 nouns, 1000 verbs, and 700 adjectives. We mainly
consider knowledge from WordNet and ConceptNet, with a
set of core relations: isA,madeOf, partOf,mannerOf, used-
For, and capableOf. Table 4 details the core relations and
their descriptions and examples. We denote this graph as
a basic graph, which contains 488,216 nodes and 962,228
edges. Then, we extract instanceOf and isA relations from
DBpedia to expand the core graph with more specific nodes.
In this step, we employ an embedding-based semantic simi-
laritymethodusing pre-trainedSentence-BERT formapping.
After integration, the graph is expanded to 1.4M nodes and
3M edges.

Finally, we integrate commonsense knowledge from
diverse sources into our graph, ensuring a wide-ranging and
diverse coverage. To map nodes from other sources to our
graph,we employ themappings developed byCSKGfor inte-
gration. Moreover, to merge nodes, we use the embedding-
based similarity method to identify nodes with the same
meaning, and then use the tokenization-based method for
verification. After integration, the nodes in PrimeNet are
enriched with different kinds of commonsense knowledge,
with 2.04M nodes and 6.03M edges.

Exploration

Then, we design multiple functions for exploring the graph
that are capable of:

7 https://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt
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Table 3 Details of knowledge integration for individual sources and mapping between sources

Step 1. Individual sources

ConceptNet Initial nodes and edges are used, and 34 relations are mapped to PrimeNet relations (e.g.,/r/IsA is converted
to isA, /r/UsedFor is converted to usedFor)

ATOMIC Initial nodes, edges, and 9 relations

WordNet Hyponym and hypernym are converted to isA, part holonymy is converted to partOf, substance meronymy
is converted to madeOf

FrameNet* Four types of nodes are used (i.e., frames, frame elements, lexical units, and semantic types) and 19 relations
are mapped to PrimeNet relations (e.g., is_causative_of is converted to cause)

Roget Two relations are used, i.e., synonyms and antonyms are mapped to the PrimeNet relations synonym and
antonym, respectively

Visual Genome* The image objects are converted to WordNet synsets. The relationships between objects are mapped to the
relation locatedNear. Object attributes are represented by different relations, conditioned on their part-of-
speech, i.e., capableOf for verbs and mayHaveProperty for adjective attributes

Wikidata* 101K statements in Wikidata-CS subset are used, and the relations are manually mapped to 15 relations

DBpedia The instance-types subset and infobox-properties subset are used, and#type relation is converted toPrimeNet
relation instanceOf

Step 2. Mapping between sources

WordNet-WordNet* Align ConceptNet and Visual Genome using WordNet InterLingual Index (ILI) generating 117,097 map-
pings

WordNet-Wikidata* Generate links between WordNet synsets and Wikidata nodes using pre-trained XLNet model for embed-
dings. Manual validation with 17 students. Keep 57,145 validated edges

FrameNet-ConceptNet* Link FrameNet lexical units to ConceptNet nodes through Predicate Matrix (3016 edges). Use 200k hand-
labeled sentences from FrameNet corpus for additional linking

Lexical matching* Establish links between nodes in ATOMIC, ConceptNet, and Roget through exact lexical matching of labels

Semantic matching Establish links between nodes in ConceptNet, Wikidata, and DBpedia through semantic matching of labels

Relation types are in italics. * denotes the processed nodes, edges, or mappings released by Ilievski et al. [7]

• Exploring graph structure of PrimeNet. For example,
nodes and edges functions are designed to generate
all concepts and relations in PrimeNet, respectively,
andget_number_of_nodes andget_number_of_edges are
designed to count the number of nodes and edges in the
knowledge graph.

• Exploring commonsense knowledge for specific con-
cepts. For example, given a concept, what_is function is
designed to get all its relations, get_polarity function is

used to get its sentiment polarity, and find_path function
is designed to find a specific path in PrimeNet given a
pair of concepts.

• Integrating new knowledge into PrimeNet. For example,
the add_node and add_edge functions are designed to
add new concepts and relations into PrimeNet, and the
add_primenet_new function is able to incorporate a new
knowledge base into PrimeNet.

Fig. 5 Illustration of graph construction of PrimeNet. Starting with
Core WordNet, we first construct a basic graph with core words and
relations from WordNet and ConceptNet. Then, we add instanceOf

knowledge fromDBpedia andWikipedia. Next, diverse types of knowl-
edge from other knowledge bases are incorporated into the graph of
PrimeNet
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Table 4 Core relations of PrimeNet, and their description, example, and mappings to WordNet and ConceptNet

Relations Description Example Mapping to WordNet Mapping to ConceptNet

isA A is a specific instance of B (car, isA, machine) Hyponym, hypernym /r/IsA, /r/InstanceOf

madeOf A is made of B (car, madeOf, metal) Meronymy /r/MadeOf

usedFor A is used for B; the purpose
of A is B

(hammer, usedFor, hit) − /r/UsedFor

partOf A is a part of B (gunlock, partOf, gun) Holonymy /r/PartOf

mannerOf A is a specific way of B (screw, mannerOf, revolve) − /r/MannerOf

capableOf Something that A can typi-
cally do is B

(bowl, capableOf,
hold_water)

− /r/CapableOf

We detail all the designed functions in Table 5, including
their input, output, and description. These functions make
it easy to apply PrimeNet in downstream tasks, as well
as update PrimeNet with new commonsense knowledge or
domain-specific knowledge.

Concept Detection

To create the concept layer of PrimeNet, we conduct concept
detection to identify concepts that represent categories or
classes of objects, ideas, or events based on shared features

Table 5 Functions designed for exploring PrimeNet

Function Input Output Description

Nodes − A list of nodes Return all nodes in PrimeNet

Edges − A list of edges Return all edges in PrimeNet

get_number_of_nodes − An int number Return the number of nodes in PrimeNet

get_number_of_edges − An int number Return the number of edges in PrimeNet

relation_types A node A list of relation types Return all relation types that the node involved

what_is A node A path of the node Return the first edge of a node

what_can_be A node A list of edges Return all edges of a node

relation_exist A node and a relation type True or False If a relation type exists in the node return True, else
False

get_node_with_relation A node and a relation type A node Given a node A and a relation R, return node B if there
is an edge (A, R, B)

Explain A node and a relation type A chain of this node Return the chain of a node and a relation type

Generalize A node A list of edges Return the root node of each of its relationships

get_similarity Two nodes A float score Return a score that denotes how similar two nodes are,
based on the path similarity computed by Sequence-
Matcher

get_polarity A node Positive or Negative Return the sentiment polarity of a node

get_path start_node and end_node A path Return a path from the start_node to the end_node.

find_last_nodes A node A list of paths Return all edges where the end_node is the given node

find_all_paths Start_node and end_node A list of paths Return all paths from start_node to end_node

get_node_degree A node A number Return the number of edges which connect with the
given node

get_phonetic A concept The phonetic information Return the phonetic information of a concept

add_node A node − Add a node to PrimeNet if it does not exist in PrimeNet

add_edge An edge − Add an edge to PrimeNet

add_primenet_new A new knowledge graph − Add a new knowledge graph to PrimeNet

print_to_file A knowledge graph − Save a knowledge graph to a file

For each function, we introduce its input, output, and description
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or characteristics [39]. An intuitive approach is to use the isA
relation to establishmappings between concepts and entities.
For example, (dog, isA, animal), (cat, isA, animal), and (lion,
isA, animal) indicate that animal is a concept, and dog, cat,
and lion are entities falling under that concept.

Though simple, in practice, it is sub-optional to identify
concepts by checking whether exist entities fall under them.
For example, animal, dog, and corgi have specific entities.
However, only animal and dog arewidely used as concepts in
human daily reasoning, corgi are too specific. In this section,
we study how to conduct concept detection with appropriate
abstractions.

Preliminaries

When considering the conceptualization, it is important to
measure the abstractness of a term. For example, person is a
more abstract concept compared with student. Given a graph
with isA relation, it is observed that abstract terms are usually
located at the higher levels in a graph, while the specific
terms tend to be positioned at the lower levels Liu et al. [8].
Specifically, the leaf nodes are regarded as the most specific
terms, and they are considered as the first level. The level of
non-leaf nodes is defined as the length of the longest path
from the leaf nodes to itself. Formally, the level of a term is
defined as follows.

Definition 2 (Level Score) Given a term c, the level score of
c is defined as:

level(c) =
⎧
⎨

⎩

max
c′∈hypo(c)

level(c′) + 1, i f hypo(c) �= φ

1, otherwise

(1)

where hypo(c) is a set of hyponyms of c, and φ denotes an
empty set.

The abstract words have higher-level scores and specific
terms have smaller-level scores. For example, the level scores
of dog, mammal, and animal, are 72, 89, and 362, respec-
tively.

It is also observed that, for an abstract term, its hyponyms
are usually positioned at diversified levels, while its
hyponyms would be more concentrated for a specific term.
Based on it, Liu et al. [8] defined an entropy-based metric for
the abstractnessmeasurement. Formally, the entropy score of
a term is defined as follows.

Definition 3 (Entropy Score) Given a term c, its entropy
score is defined as:

entropy(c) =
{
0, if c is a leaf term

−∑l
i=1 pi (c) · log pi (c) otherwise

(2)

where l is the maximum level, and pi (c) is the ratio of the
number of c’s hyponyms at the i-th level to the total number
of c’s hyponyms.

The entropy of abstract terms is often greater than that
of specific terms. For example, the entropy scores of pupil,
student, and people are 0.563, 0.927, and 1.790, respectively.

In general, abstract concepts and concrete entities are
differentiated using these abstractness measure methods by
manually-defined thresholds [8].However, thesemethods are
inaccurate and not suitable when applied to complex graphs
with large-scale commonsense knowledge. The primary rea-
son is the vast amount of knowledge, inevitably leading to
the presence of cycles and isolated subgraphs, significantly
reducing the accuracy of the aforementioned methods. Fur-
thermore, some commonly used vocabulary lacks numerous
lower-level nodes, e.g., voice, track, and driver, and they
have lower scores compared with other words with more
hyponyms, e.g., transport, symbol, and medicine. As such,
the conceptualization methods which only rely on hierarchi-
cal information are not reasonable for such cases.

We perform a probing experiment as illustrated in Fig. 6.
We assume that words from Core WordNet are concepts,
given their fundamental role in describing the world. For
all nodes in Core WordNet and our knowledge graph G of
PrimeNet, we show probability distributions of their level
scores and entropy scores. It is observed that a consider-
able number of words in Core WordNet have level scores
below 50, and entropy scores under 1. These words are read-
ily excluded fromconcept sets, by applyingpreviousmethods
for conceptualization.

Conceptualization

Previous methods employed a bottom-up approach to mea-
sure abstractness, where a word’s score relies on its hyponym
set. Leaveswithout hyponyms are initiated as the seed set and
then inferred for the others. In thiswork,we initialize the core
concepts and then infer other words accordingly.

Specifically, the initial set of concepts, denoted as C0 =
{c1, c2, c3, · · · }, comprises commonly usedwords fromCore
WordNet that describe the world in human daily life. In
an ideal scenario, the hypernyms of these core words are
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Fig. 6 Illustration of data distribution of Core WordNet and the graph of PrimeNet, considering of the level scores and entropy scores of nodes

expected to be more abstract and should be considered as
concepts. However, in a practical scenario, not all of their
hypernyms can be unequivocally regarded as concepts due to
the intricate interweaving of commonsense knowledge. For
instance, relationships such as (dog, isA, animal), (dog, isA,
pet), (pet, isA, animal), and (dog, isA, species) are all deemed
correct and coexistwithin the knowledge base. Thus,we need
amore accuratemethod tomeasure the abstractness of hyper-
nyms. It is observed that not all hypernyms have the same
weight when working as the concept of a dog. This prob-
lem has been deeply studied, and a large-scale probabilistic
taxonomy, i.e., Probase [21], has been constructed to provide
statistical insights of isA relations. It includes “isA” relations
for 2.7 million terms, automatically mined from a corpus of
1.68 billionweb pages. That is, each triplet (t, isA, c) is linked
to a frequency score frec(t, c), providing frequency informa-
tion computed through a data-driven method based on the
large-scale corpus.

For example, (dog, isA, animal) and (dog, isA, species)
show that both animal and species are concepts of dog, and
f req(dog, animal) > f req(dog, species) shows animal
is a more typical concept for dog, compared with species.
Given a triplet (t, isA, c), it is associated with a frequency
score freq(t, c) in Probase. The frequency score is an impor-
tant signal to identify whether this relation is typical or not.
Based on this observation,Wang et al. [22] propose a typical-
ity score,which is definedbasedon the frequency information
to tell how popular a concept c is as far as an entity t is con-
cerned, and how popular an entity t is as far as a concept c is
concerned:

Definition 4 (Typicality Score) Given an term t, the condi-
tional probability Pr(c|t) of a term c is defined as:

Pr(c|t) = f req(t, c)
∑

ci ∈hyper(t) f req(t, ci )
, (3)

where hyper(t) = {c1, c2, c3, · · · } is the set of hypernyms
of t.

Given a concept c, the conditional probability Pr(t |c) of
an entity t is defined as:

Pr(t |c) = f req(t, c)
∑

ti ∈hypo(c) f req(ti , c)
, (4)

where hypo(c) = {t1, t2, t3, · · · } is the set of hyponyms of
c.

It is observed that a term tends to be abstract when it is
strongly connected with multiple concepts. Continuing the
previous example, the term animal, pet, species link to 98,
435, 22 concepts in C0, respectively. To formalize this regu-
larity, a linking-based metric is designed as follows:

Definition 5 (Conceptual Score) Given a term w and a set of
concepts C , the conceptual score of w is defined as:

abstract(w) =
∑

ti ∈hypo(w)

1(ti ∈ C) ∗ f req(ti , w)
∑

o j ∈hyper(ti ) f req(ti , o j )

(5)

where hypo(w) = {t1, t2, · · · , ti · · · } is the set of hyponyms
of w, hyper(ti ) = {o1, o2, · · · , o j · · · } is the set of hyper-
nyms of ti , and 1(ti ∈ C) is set to 1, otherwise 0.

This scoring method is designed to quantify the extent to
which a term functions as a universal, abstract link across a
diverse array of concepts. Utilizing the initial set C0, we cal-
culate the abstraction scores of their hypernyms, presenting
the top 50 terms in Fig. 7. According to human analysis, all
of them are confirmed as conceptual terms. In addition, we
present their level scores and entropy scores, revealing that
thesemetrics fall short in inferring themas abstract terms. For
instance, topic, song, and adjective exhibit low-level scores
(i.e., 3, 3, and 28), and author and classic display low entropy
scores (i.e., 0.59 and 1.72), excluding them from being iden-
tified as concepts.

We employ an iterative approach to augment the concept
set by systematically incorporating terms with high abstrac-
tion scores. In i-th iteration, we introduce the top-n (e.g.,
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Fig. 7 Examples of top-50 words scored by the designed conceptual score function. We compare their level scores and entropy scores with our
conceptual scores

n = 3) hypernyms for each concept in C i−1. The constraint
imposed is that these hypernyms must surpass a specified
threshold Tabs . This process results in the construction of an
updated concept set, denoted as C i .

Primitive Discovery

The primitive discovery is to identify the most basic and
essential element of the world knowledge, which provides a
way to represent and organize knowledge in a structured and
meaningful manner [14, 40]. The well-designed primitive
set can help to produce more accurate and reusable knowl-
edge bases. However, creating a thorough set of primitives
is extremely time-consuming and labor-intensive, hence it is
not generally employed inmost knowledge bases [11, 12, 14,
19].

In this work, we apply automatically discover a primitive
set of commonsense knowledge. The basic idea entails clus-
tering concepts that share similar functions at the cognitive
level, then labeling the most representative concept in each
cluster as a conceptual primitive. To achieve this goal, ini-
tially,we conduct concept clustering to group together related

concepts quickly, filtering out those with highly disparate
semantic meanings. Subsequently, we conduct a more pre-
cise primitive detection process, further refining each cluster
to retain only the most consistently coherent concepts at the
cognitive level and selecting the most representative concept
to serve as the primitive for that specific set of concepts.

Concept Clustering

In this work, the concept clustering is designed to group cog-
nitively related concepts while swiftly eliminating highly
unrelated ones, thereby simplifying the following task of
accurately conducting primitive detection. To achieve this
goal, we employ a lexical substitution task to conduct con-
cept clustering. Specifically, this task is to replace a concept
in a sentence with a different concept. If the grammatical
structure and overall meaning of the sentence are preserved,
these two concepts are considered to have similar meanings.
For example, in the sentence “the landlord tried to eject the
tenants for not paying rent on time,” one could substitute the
word “eject” with “dispossess,” “remove,” “oust,” or “evict”
without changing the overall meaning of the sentence.
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Inspired by Cambria et al. [19], we fine-tune pre-trained
languagemodels.8 for lexical substitution.More specifically,

1. Training Data.Weextract all the verb-nounandadjective-
noun concepts from ConceptNet 5.7 [4] together with a
sample sentence for each concept. The collection of con-
cepts is denoted as E = {e1, e2, e3, · · · , en}, where each
concept ei ∈ E is assigned with a sample sentence si .
For each concept ei , we remove it from the sentence si

and the remaining sentence is denoted as its context ci .
We employ pre-trained language models to represent the
concept ei and its context ci as fixed-dimensional embed-
dings, i.e., ei and ci , respectively.

2. Training Objective. Then, we fine-tune the pre-trained
language model with a lexical substitution task. The
assumption is that a relevant lexical substitute should be
both semantically similar to the target word and have a
similar contextual background. Given a concept ei , its
context ci is regarded as the positive example. We create
negative examples by sampling random concepts, which
are denoted as N (ei ) = {e∗

i,1, e∗
i,2, · · · , e∗

i,z}. The train-
ing objective function is defined as:

O =
n∑

i=1

(log(σ (ei , ci )) +
∑

e∗
i, j ∈N (ei )

log(σ (−e∗
i, j , ci ))),

(6)

where n is the number of training examples, z is the
number of negative words for each example, and e j

i
denotes the representation of a negative concept. After
fine-tuning, the representation model is expected to map
concepts and context into an embedding space, where
concepts that are appropriate for a given context are
located close to one another.

3. Semantic Measure.We design a semantic measure to find
the replacement of the concept in the embedding space.
Given a concept ei and its context ci , we calculate the
cosine distance of all the other concepts, e.g., w ∈ E in
the embedding space as:

Sim(w, (ei , ci )) = cos(w, ei ) · cos(w, ci ) · cos(si , swi ),

(7)

where si is the original sentence, and sw
i is a sentence by

replacing ci in si with w.

8 In our experiment, the used pretrained model is all-mpnet-base-v2
Having undergone pretraining on over 1 billion sentence pairs, this
model is capable of mapping input text to a 768-dimensional vector
space, ideal for tasks such as clustering or semantic search. Further
details can be found at: https://huggingface.co/sentence-transformers/
all-mpnet-base-v2.

Using pretrained models, we conduct concept clustering
through a fast clustering algorithm9 developed by Sen-
tenceBERT [38]. This algorithm is more efficient than
previous hierarchical clustering methods like agglomer-
ative clustering, making it better suited for large-scale,
high-dimensional clustering tasks. The clustering process
involves two thresholds: the similarity threshold, which
determines when two sentences are considered similar, and
the min_community_size threshold, specifying the mini-
mum size for a local community. These thresholds allow
us to obtain either large, coarse-grained clusters or small,
fine-grainedones. In our implementation, based onour exper-
imental observations, we set the similarity threshold to 0.6
and the min_community_size to 10.

Primitive Detection

The primitive detection involves detecting the errors in each
cluster and associating a meaningful and generalizable prim-
itive with a cluster of related concepts. For example, the
concepts like ingest, slurp, munch are represented by a prim-
itive EAT. It is inherent to human nature to try to categorize
things, events, and people, finding patterns and forms they
have in common.

In this work, we explore the generative ability of large
language models (LLMs) for primitive detection. To ensure
the accuracy, as illustrated in Fig. 8, we design a detection-
verification framework, where the first LLM works as
examinee to generate a primitive for the concept cluster, and
another LLM works as examiner to check whether the gen-
erated primitive is correct. Specifically,

Step-1: Primitive Detection by Examinee LLM The
input of examinee (denoted as LLM1) is a cluster of con-
cepts. The designed prompt is “Please generate a primitive
for the following concepts: C.,” where C is a list of concepts
in a cluster.

Step-2: Primitive Verification by Examiner LLM The
examiner (denoted as LLM2) is to verify whether the prim-
itive generated by LLM1 is correct or not. To setup LLM2,
we input the primitive P and the related concepts C into it,
concatenated to the following instructions: Do you think P is
representative for the following concepts: C. Please answer
“yes” or “no.”

Step-3: Explainable context by Examiner LLM For the
correct primitive and cluster, we ask the LLM2 to generate
a sentence as explainable context. With the primitive P and
the related concepts C into it, concatenated to the following
instructions:Please generate a short sentence to describe the

9 More details are available at https://sbert.net/examples/applications/
clustering/README.html.
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as it unfolds new opportuni�es for 
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Fig. 8 The overall framework for primitive detection. LLM1 is used as an examinee to generate representative primitive for each concept cluster,
and LLM2 is used as an examiner to verify the primitive and its related concepts

primitive P. In this [MASK] can be replaced by the concepts
in C.

Experiments

In this section, we compare our PrimeNet with other widely-
used knowledge bases in terms of coverage, accuracy, and
efficiency. Then, we conduct experiments on semantic simi-
larity and commonsense reasoning to verify the accuracy and
efficiency of PrimeNet.

Statistics and Analysis

Wefirst evaluate the coverage and accuracy of commonsense
knowledge presented in PrimeNet and other widely used
knowledge bases. In Table 6, we summarize the size of differ-
ent knowledge bases. Then, we conduct a human assessment
by utilizing the evaluation method and criteria established
by Hwang et al. [36]. Specifically, we randomly select 3000
triplets from PrimeNet and present each triplet in the for-
mat of (head_concept, relation, tail_concept). The evaluation
involves three annotators who hold Ph.D. degrees in com-
puter science. The annotators use four labels to assess each
triplet: (1) always/often, indicating the triplet is frequently
true; (2) sometimes/likely, indicating it is occasionally or
probably true; (3) farfetched/never, indicating it is false or
extremely unlikely; and (4) invalid, indicating it is illogical.
Triplets labeled as always/often or sometimes/likely are cat-
egorized as Accept, while others are categorized as Reject.

Table 6 Accuracy (%) assessed by human annotators

Knowledge bases Size Accept Reject No judgment

TransOMCS 18.5M 41.7 53.4 4.9

ATOMIC 877K 88.5 10.0 1.5

ConceptNet 21M 88.6 7.5 3.9

PrimeNet 6M 92.4 5.2 2.4

Size denotes the number of triplets in different knowledge bases

To ensure impartial evaluation, annotators are allowed to skip
unfamiliar triplets by labeling No Judgment. The final results
are determined by the majority vote among three annotators.

This experiment assesses PrimeNet’s quality and com-
pares it to other commonsense knowledge bases, including:

• TransOMCS [5]: This is a knowledge base containing
18.5M triplets that were automatically extracted from
syntactic parses of sentences from various web sources,
including Wikipedia, Yelp, and Reddit.

• ATOMIC [6]: It contains 877K textual descriptions of
inferential knowledge. It is organized as typed if-then
relations with variables, such as “if X pays Y a compli-
ment, then Y will likely return the compliment.”

• ConceptNet [4]: This is a large-scale knowledge base
that contains relational knowledge collected from
resources created by experts, crowdsourcing, and games
with a purpose [41].

As shown in Table 6,10 it is observed that PrimeNet
stands out as the highest quality knowledge base with an
acceptance rate of 92.4%, showing that PrimeNet is highly
reliable and contains commonsense knowledge that is con-
sistent with human understanding. ConceptNet, ATOMIC20

20,
andATOMIC also demonstrate high quality, with acceptance
rates of 88.6%, 91.3%, and 88.5%, respectively. Although
TransOMCS has a vast number of triplets (i.e., 18.5M), it
has a lower accuracy compared to the other resources, with
an acceptance rate of only 41.7%, indicating it may not be as
reliable as the other knowledge bases.

Task-1: Semantic Similarity

We evaluate the effectiveness of PrimeNet by examining its
impact on improving distributional representations on the
word semantic similarity task. Following previous works [4,

10 Performances of compared knowledge bases are reported by [36],
which are evaluated through crowdsourcing on theAmazonMechanical
Turk platform.
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36, 42, 43], knowledge bases are used as external knowledge
to adjust pre-trained word embeddings. The resulting refined
embeddings, molded by insights from various knowledge
bases, undergo systematic evaluation in downstream tasks,
such asword semantic similarity assessments. Enhanced per-
formance serves as an indicator of the superior quality of
knowledge bases in improving distributional representations.

We employ a retrofitting method11 designed by Faruqui
et al. [42] to improve pre-trained word embeddings with dif-
ferent knowledge bases. It is designed to make words that are
known to be related in a given knowledge base have similar
representations in embedding space. The training objective
is to make the new embedding of a word to be both similar
to its initial embedding and nearby words in the knowledge
base, by minimizing the following objective function:

L =
n∑

i=1

(αi ||wi − w∗
i ||2 +

∑

(wi ,w j )∈R
βi, j ||wi − w j ||2),

(8)

where α and β control the relative strengths of associations,
w∗

i is the original embedding of word wi , and wi is its new
embedding, R denotes a set of relations extracted from the
knowledge base, and (wi , w j ) denotes a relation which con-
nects wi and w j . We test the retrofitted embeddings with
different knowledge bases on two tasks, i.e., semantic simi-
larity and SAT-style analogy.

This task is to measure the degree of similarity between
word pairs by calculating the cosine similarities between
their embeddings, and then compare the similarities to human
judgments. A good method should provide similarities that
are strongly correlated with the human judgments evaluated
by Spearman correlation coefficient [44]. In our experiment,
we conduct experiments on eight widely-used word similar-
ity datasets, including

• YP-130: A dataset comprising 130-word pairs with sim-
ilarity ratings provided by human annotators [45].

• MenTR-3K: Consists of 3000-word pairs with similarity
judgments collected from human participants [46].

• RG-65: Contains 65-word pairs with similarity ratings
obtained through human evaluations [47].

• MTurk-771: Comprises 771-word pairs with similar-
ity scores obtained through crowdsourcing on Amazon
Mechanical Turk [48].

• SimLex-999: Includes 999-word pairs with similarity
ratings collected from human subjects, aiming to provide
a balanced set for evaluatingword similaritymodels [49].

11 https://github.com/mfaruqui/retrofitting

• SimVerb-3500: Consists of 3500-verb pairs annotated
with similarity judgments by human raters [50].

• VERB-143: Contains 143-verb pairs with similarity rat-
ings collected from human annotators [51].

• WS-353: Comprises 353-word pairs, including both sim-
ilarity and relatedness judgments obtained from human
raters [52].

Two popular pre-trained word embeddings are used in
our experiments, including Word2Vec [53], which is trained
on the first 100M of plain text from Wikipedia,12 and
GloVe [54], which are trained on 6 billion words from
Wikipedia and English Gigaword13. In this task, we com-
pare PrimeNet with FrameNet, WordNet, and ConceptNet,
which contain synonyms knowledge.

Table 7 presents the overall performance on different
word similarity datasets. PrimeNet demonstrated a signif-
icant improvement in retrofitting semantic representations,
with an average increase of 6.73%, 5.49%, and 5.31%
for Word2Vec (300d), GloVe (50d), and GloVe (300d),
respectively. WordNet also achieved notable performance
gains, with an average improvement of 4.75%, 3.79%, and
3.98%, benefiting the high-quality synonyms knowledge
constructed by experts. While the crowd-sourced Concept-
Net only slightly outperformedWord2Vec (300d) and GloVe
(50d), and slightly worse than GloVe (300d). The solid per-
formance gain achieved by PrimeNet suggests that it is
successful in integrating knowledge from various sources
into PrimeNet and creating a robust knowledge base.

Task-2: Neurosymbolic Commonsense Reasoning

Commonsense knowledge is important to natural language
understanding through contextual reasoning. An effective
method for assessing this understanding is through common-
sense question-answering (QA) tasks, wherein the ability to
answer questions often hinges on possessing commonsense
knowledge [55]. In commonsense QA tasks, pre-trained lan-
guage models like BERT and RoBERTa have demonstrated
their effectiveness in bridging the gap between human and
machine performance. Additionally, the incorporation of
external knowledge bases has proven crucial for enhancing
answer accuracy, providing valuable insights for contex-
tual comprehension and reasoning. Hence, approaches that
combine neural pre-trained language models with symbolic
knowledge bases, known as neurosymbolic methods, have

12 We use the Text8Corpuswhich is available inGensim: https://github.
com/RaRe-Technologies/gensim-data, and the CBOWmodel for train-
ing: https://code.google.com/archive/p/word2vec/
13 https://nlp.stanford.edu/projects/glove/
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exhibited significant potential for advancing commonsense
reasoning.

Task Setting
Following previous methods [7, 56], we use a neurosymbolic
method to evaluate the commonsense QA under a zero-
shot setting proposed by Ma et al. [57]. Formally, given a
natural language question q and a set of possible answers
A = {a1, a2, · · · , an}, the task is to select the most proba-
ble answer a∗ from A . The wrong answers in A are denoted
as distractors. The pre-trained language models are used as
backbone. RoBERTa-large is used in our experiments. In a
zero-shot setting, themodel has no access to the training data.
The neurosymbolic solution is to transform knowledge from
different knowledge bases into an artificial QA set for pre-
training. For example, a triplet (losing weight, usedFor, being
healthier) is generated as losing weight is for being healthier,
and several distractors are generated by negative sampling.
After pre-training, the model are tested on different datasets.
We follow the parameter settings inMa et al. [57]. The exper-
iments are tested for five rounds, and the average accuracy
of the predicted answers is used as the metric.

Baselines
We compare the neurosymbolic methods with the follow-
ing baselines. Majority answers each question with the most
frequent option in the entire dataset. Self-Talk [58] is an unsu-
pervised method. It generates clarification prompts based on
a template prefix, which are leveraged to elicit knowledge
from another language model, which is used jointly with the
original context and question to score each answer candi-
date. SMLM [59] is designed to pre-train the LM with three
representation learning functions which aim to complete a
knowledge triple given two of its elements. To show the upper
bound, we report the supervised methods on RoBERTa-large
model with access to the training data, as well as the human
performance. of this work, we include results of a supervised
fine-tuned RoBERTa system and of human evaluation. To
facilitate the neurosymbolic method for commonsense rea-
soning, we compare PrimeNet with ATOMIC, ConceptNet,
Wikidata, WordNet, and CSKG. Please refer to Ilievski et al.
[60] for more details about QA data generation with different
knowledge bases, distractors sampling, and training regimes.

Benchmarks
Following Ma et al. [57], we use five commonsense QA
benchmarks for evaluation, including:

• Abductive Natural Language Inference (aNLI) [61] is
a binary-classification task, which is to apply abductive
reasoning and commonsense to form possible expla-
nations for a given set of observations. Given two
observations from narrative contexts, the goal is to pick
the most plausible explanatory hypothesis.

• Commonsense Question Answering (CQA) [62] con-
tains 12,247 examples. Each example includes a question
and five answer candidates. The questions are sourced
from a ConceptNet. Answer candidates are formed by
combining ConceptNet nodes with additional distractors
gathered through crowdsourcing.

• Physical Interaction Question Answering (PIQA) [63]
is a dataset for reasoning about physical commonsense.
Each question is associated with two possible solutions.
The task is to choose the most appropriate solution, of
which exactly one is correct.

• Social Intelligence Question Answering (SIQA) [64] is
a dataset for commonsense reasoning about social situa-
tions, with 38,000multiple choice questions. Each exam-
ple comprises a context, a question, and three answer can-
didates. The context is derived from ATOMIC, questions
are generated based on nine templates corresponding to
relations in ATOMIC, and answers are obtained through
crowdsourcing.

• WinoGrande (WG) [65] contains 44K problems inspired
by pronoun resolution problems in Winograd Schema
Challenge (WSG) [60]. Each example includes a context
description featuring an emphasized pronoun, with two
options provided as possible references.

Performance
The overall performance is shown in Table 8. It is observed
that pre-training the language models with external knowl-
edge is effectiveness to improve the performance of com-
monsense QA task. The main reason is that the exter-
nal knowledge is important supplementary information for
implicit knowledge embedding in pre-trained languagemod-
els. Our PrimeNet achieved the best performance when
RoBERTa is used as backbone, with the average perfor-
mance gains of 1.74%, 2.88%, 0.82% over ATOMIC, Con-
ceptNet+Wikidata+WordNet, and CSKG, respectively. This
experiment indicates that PrimeNet has a good quality in
organizing commonsense knowledge.

Case Studies

In our method, wemanually checked the detected primitives.
This step is conduct by 5 senior Ph.D. students majors in
natural language processing. We manually code the explain-
able of primitives. For example, INCREASE is defined as
INCREASE(obj):= obj++, which is the basic operation
that increments the value of an object and provides a foun-
dation for more complex reasoning. It is observed that some
primitives have a hierarchical structure. We show examples
of primitives in Fig. 9. At Level-1, the primitive GROW is
defined as GROW(obj) = INCREASE(obj.SIZE):=
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Table 8 Performance of
neurosymbolic methods across
five commonsense QA tasks in a
zero-shot setting

Model Knowledge base aNLI CQA PIQA SIQA WG

Majority − 50.8 20.9 50.5 33.6 50.4

Self-talk − − 32.4 70.2 46.2 54.7

SMLM − 65.3 38.8 − 48.5 −
RoBERTa-large∗ − 85.6 78.5 79.2 76.6 79.3

Human performance − 91.4 88.9 94.9 86.9 94.1

RoBERTa-large − 65.5 45.0 67.6 47.3 57.5

ATOMIC 70.8 64.2 72.1 63.1 59.6

ConceptNet, Wikidata, WordNet 70.0 67.9 72.0 54.8 59.4

CSKG 70.5 67.4 72.4 63.2 60.9

PrimeNet 71.2 68.3 72.4 64.5 62.1

RoBERTa-large∗ denotes the performance of RoBERTa-large under a supervised setting

obj.SIZE++ = obj(l++, h++, w++), which is
accomplished by using the INCREASE primitive to incre-
ment the object’s SIZE attribute, such as length (l), height
(h), and width (w). The Level-2 primitive LENGTHEN
is even more specific, adding only length to an object,
and it is defined as LENGTHEN(obj)=INCREASE(obj.
SIZE.LENGTH):=obj.SIZE.LENGTH++ = obj
(l++, h, w).

We have also performed several experiments on affor-
dances by testing how PrimeNet is able to model human-
object interactions in different scenarios, e.g., how to identify
and use a liquid container, and in different modalities, e.g.,
speech processing and computer vision (Fig. 10). Finally,
we have also carried out preliminary experiments on how
PrimeNet can represent and handle different types of domain-
specific knowledge, e.g., safety commonsense knowledge
(Fig. 11). We intend to provide a more detailed account of
these experiments and additional ones in our future work.

RelatedWorks

In this section, we conduct a comprehensive literature
review on commonsense knowledge acquisition, including
crowdsourcing methods, automatic extraction methods, and
approaches centered around extracting implicit knowledge
from pre-trained language models. Then, we introduce the
conceptual primitives theory, which is a pivotal component
in the construction of our commonsense knowledge base.

Commonsense Knowledge Acquisition

Commonsense knowledge is not explicitly defined. It is an
inherent understanding of the world that humans possess
but machines lack. To narrow the gap between human and
machine intelligence, the process of acquiring commonsense
knowledge is crucial for improving machine intelligence.
There are mainly three major methods to the knowledge

Fig. 9 Examples of the hierarchical structure of primitives in PrimeNet
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Fig. 10 A sample scenario in which PrimeNet’s capabilities of understanding and modeling affordances have been tested

acquisition, i.e., crowdsourcing, automatic extraction, and
mining from pre-trained language models.

Crowdsourcing

Crowdsourcing is a useful approach for collecting common-
sense knowledge fromadiverse groupof human contributors,
such as human experts [2, 33], web users [66, 67], and
participants in human computation games [68, 69]. By tap-
ping into the collective wisdom of individuals, this approach
captures intuitions and insights commonly held by people,
thus contributing valuable data to the construction of com-
monsense knowledge bases. The crowdsourcing approach
exhibits high adaptability across diverse tasks and domains.
By involving a varied group of contributors, it ensures that
multiple viewpoints are considered, leading to the creation
of a more comprehensive and balanced knowledge pool. The
existing knowledge bases built through crowdsourcing typ-
ically encompass the following categories of commonsense
knowledge.

Factual Knowledge
It represents concrete and specific details about the world,
events, people, places, objects, and other observable phenom-
ena, such as “wheel is part of bicycle,” “dog is an animal,” and
”LosAngeles is located in California.” In the early 1980s, the
Cyc [2] project undertook the task of manually constructing
a comprehensive knowledge base using the CycL representa-

tion language, encompassing the basic facts and rules about
the world. After the efforts of its first decade, the Cyc project
expanded to include around 100,000 terms. By the time
of its release in 2012, known as OpenCyc 4.0, the knowl-
edge base had undergone substantial growth, encompassing
over 2 million facts across 239,000 concepts. In 2002, the
DOLCE [70] (Descriptive Ontology for Linguistic and Cog-
nitive Engineering) project was designed to manually collect
the ontological categories underlying natural language and
human commonsense with disambiguated concepts and rela-
tions. Freebase [71] is a collaborative knowledge base by
gathering data from various sources, including Wikipedia,
the Notable Names Database, and contributions from com-
munity users. Google Knowledge Graph [72] is powered
in part by Freebase, with an extensive collection of bil-
lions of facts about people, places, and things. It is served
as a foundation for Google’s search results, enabling the
search engine to deliver useful and accurate information to
users. ConceptNet [4] leverages crowdsourcing contributions
from users to acquire commonsense knowledge. It originated
from the Open Mind Common Sense [66] and has grown
by incorporating data from other crowd-sourced resources,
expert-created content, and purposeful games. ConceptNet
is a widely used commonsense knowledge base with over 21
million edges and 8 million nodes, covering a diverse range
of 36 commonsense relations, such as isA, partOf, usedFor,
and capableOf. Moreover, ConceptNet can be linked to other
knowledge bases, such as WordNet, Wiktionary, OpenCyc,
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Fig. 11 An example of safety
commonsense knowledge in
PrimeNet

and DBpedia, and now, it is a multi-lingual knowledge base
that can also build connections among 83 languages.

Lexical Knowledge
There are several lexical databases manually created by
experts, such as WordNet [33], Roget’s Thesaurus [34],
FrameNet [3], MetaNet [73], VerbNet [74], and Prop-
Bank [75]. Among these lexical knowledge bases, WordNet
is a highly popular lexical knowledge base which cap-
tures semantic relations between words. Within WordNet,
nouns, verbs, adjectives and adverbs are grouped into sets
of cognitive synonyms (synsets), each expressing a dis-
tinct concept. These synsets are interlinked by means of
conceptual-semantic and lexical relations. WordNet is now
available in over 200 languages, allowing researchers and
linguists worldwide to explore the complexities of language
and word associations across diverse contexts.

Encyclopedic Knowledge
Encyclopedic knowledge is related to a broad understanding
of various subjects and topics. For example, Wikidata [76]
is a knowledge graph coupled with Wikipedia, which is
a free, open, and multilingual online encyclopedia that is
collaboratively edited by volunteers. DBpedia [77] extracts
structured information from Wikipedia data and converts
it into a machine-readable format for use in the Semantic
Web and data mining domains. The encyclopedic knowledge
resources offer a wide range of information to help people
understand various topics and fields.

Domain Knowledge
More recently, commonsense knowledge bases have been
specifically developed to cater to particular tasks, such as dia-
log systems Young et al. [78]. For example, SenticNet [19]
is a sentiment knowledge base which captures the affective
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commonsense and emotions expressed in natural language.
Visual Genome [37] contains annotations of concepts and
their relations found in a collection of images. The image
descriptions are manually written by crowd workers, and
the concepts are automatically mapped to WordNet senses
and further refined by crowd workers. ATOMIC [6] is devel-
oped to capture inferential commonsense knowledge, such
as cause-and-effect relationships. It is developed by domain
experts who contribute and validate information about every-
day events and their implied causality. ATOMIC20

20 [36] is
proposed to unify the triples fromConceptNet andATOMIC,
together with some newly developed relations.

Automatic Extraction

Despite commonsense knowledge is not explicitly defined,
it has been observed that certain types of commonsense
knowledge can be extracted through automaticmethods, such
as text mining and information extraction. Compared with
crowdsourcing, these automatic extraction methods can han-
dle large volumes of data efficiently and at a lower cost,
making them valuable tools for efficiently capturing and
updating commonsense knowledge from various domains.

Firstly, automatic extraction methods generally acquire
commonsense knowledge from large-scale text and web
pages. For example, NELL [79] (Never-Ending Language
Learning system) is designed to automatically extract struc-
tured information from unstructured Web pages. With hun-
dreds of pre-defined categories and relations and 10 to 15
examples of each, NELL extracts knowledge frommore than
500 million web pages, resulting in a large knowledge base
comprising over 2.8 million instances.WebChild [80] is con-
structed through automated extraction and disambiguation
from Web contents. It utilizes seeds derived from Word-
Net and pattern matching techniques on large-scale text
collections to gather information, includingfine-grained rela-
tions like “hasShape,” “hasTaste,” and “evokesEmotion.”
ASER [20] (activities, states, events, and their relations) is
a large-scale eventuality knowledge graph extracted from
more than 11-billion-token unstructured textual data. Sentic-
Net [19] is constructed using auto-regressive language mod-
els and kernel methods to extract polarity from text in a com-
pletely interpretable and explainable manner. Probase [21] is
constructed by extracting and organizing knowledge from a
vast collection of Web pages and documents. Its subsequent
version, named as Microsoft Concept Graph [81], harnesses
billions of web pages and search logs to build a huge graph of
relations between concepts, and has been proven valuable in
enhancing search engines, spell-checkers, recommendation
engines, and other AI-driven systems.

Secondly, severalmethods are used to improve the existing
commonsense knowledge bases. The automatic extraction

methods can help fill gaps, update outdated information,
and supplement missing commonsense knowledge in exist-
ing knowledge bases. For example, BabelNet [82] is a
multilingual knowledge base which is automatically cre-
ated by mapping the multilingual encyclopedic knowledge
repository (Wikipedia) to theEnglishWordNet based onmul-
tilingual concept lexicalizations and machine translations.
Dense-ATOMIC [83] is designed to overcome the limitations
of ATOMIC in knowledge coverage and multi-hop reason-
ing, by employing a knowledge graph completion approach
to train a relation prediction model and infer missing links
within ATOMIC, ensuring high knowledge coverage and
facilitating massive multi-hop paths.

Thirdly, some efforts have been made to automatic
integrate diverse commonsense knowledge bases, enhanc-
ing the overall coverage and richness of the knowledge
base. For example, YAGO [84] (Yet Another Great Ontol-
ogy) is designed to extract commonsense knowledge from
Wikipedia, WordNet, WikiData, GeoNames, and other data
sources. Bouraoui et al. [85] employed Region Connection
Calculus to merge open-domain terminological knowledge.
CommonSense Knowledge Graph (CSKG) [7] integrates
knowledge bases from seven diverse, disjoint sources such
as ConceptNet and WordNet. Based on ASER, Zhang et al.
[5] have developed TransOMCS with an algorithm for dis-
covering patterns from the overlap of existing commonsense
and linguistic knowledge bases, and a commonsense knowl-
edge ranking model to select the highest-quality extracted
knowledge.

Implicit Knowledge in Pre-trained Models

Recent advancements in pre-trained models have demon-
strated significant improvements across various tasks, under-
scoring their robust representation and generalization capa-
bilities. These models, pre-trained on large-scale corpora,
have proven adept at encoding diverse forms of knowl-
edge [86, 87]. For example, BERT (Bidirectional Encoder
Representations from Transformers) uses a masked lan-
guage model objective in pre-training, where parts of the
input are masked, enabling the model to predict con-
cealed words bidirectionally. This process empowers BERT
to capture contextualized representations, comprehensively
understanding intricate relationships and meanings in differ-
ent linguistic contexts. Similarly, GPT [88–90] (Generative
Pre-trained Transformer) follows the generative language
model paradigm, predicting the next word based on preced-
ing context.With a unidirectional architecture processing text
from left to right during training, it acquires knowledge of
grammar, facts, reasoning, and even some degree of com-
monsense.

Currently, there is a trend to mine commonsense knowl-
edge directly from pre-trained language models, leverag-
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ing the rich information embedded in these large mod-
els. Several works are designed to probe commonsense
knowledge directly from large pre-trained models, such
as KB-BERT [91], KB-BERTSAGE [92], and PseudoRea-
soner [93]. These approaches involve fine-tuning pre-trained
languagemodels, such asBERTandBART, on commonsense
knowledge bases like ATOMIC, ConceptNet, and ASER,
with the tasks typically entails providing the head and rela-
tion in a commonsense triple as input, with the tail serving as
the expected output. COMET [94] (COMmonsEnse Trans-
formers) is designed to leverage GPT to generate rich and
diverse commonsense descriptions in natural language. It
effectively transforms implicit knowledge from pre-trained
models into explicit knowledge within commonsense knowl-
edge graphs, and generates novel knowledge that humans
rate as high quality. LAMA [95] (LAnguage Model Analy-
sis) is an unsupervised method to leverage BERT to acquire
commonsense knowledge. It also serves as a framework14

for probing and evaluating the factual knowledge encoded
in pre-trained language models [96]. West et al. [97] design
a symbolic knowledge distillation to leverage some seeds
from ATOMIC as prompts to acquire commonsense knowl-
edge fromGPT-3, resulting a large commonsense knowledge
graph ATOMIC10x and a compact commonsense model
COMETDI S

T I L . Their work demonstrates the efficacy of col-
laborative efforts between humans and language models for
curating commonsense knowledge graphs and training effi-
cient, high-performing commonsense models.

Commonsense Knowledge Representation

Commonsense knowledge representation plays a vital role
in AI, as it entails transforming intricate and valuable
human commonsense knowledge into machine-readable for-
mats, and enables the facilitation of complex reasoning
tasks. Knowledge representation and reasoning are tightly
intertwined, as one of the primary objectives of explicitly
representing knowledge is to enable the capacity for reason-
ing, inference drawing, and asserting new knowledge.

Reflecting the complexities of human cognition, com-
monsense knowledge is represented through a variety of
methodologies. Early techniques, like first-order logic and
logic rules, provided structured frameworks for capturing
relationships and rules governing the world. These methods
encoded knowledge in terms of logical statements and rules,
enabling systems to perform deductive reasoning and infer-
ence. Beyond logic-based approaches, other methods have
emerged to represent commonsense knowledge. For exam-
ple, semantic networks employ graph structures to depict
concepts and their relationships, allowing for intuitive rep-

14 https://github.com/facebookresearch/LAMA

resentation and reasoning; frame-based systems organize
knowledge into structured frames, capturing attributes, roles,
and hierarchies among entities.

More recently, some commonsense knowledge bases have
achieved significant success and are widely applied across
various AI domains to support different reasoning tasks.
Typically, their knowledge representation frameworks adopt
a “millions of facts” approach. For instance, ConceptNet
summarizes millions of facts into a knowledge graph for-
mat, where nodes denote entities and edges denote their
relationships. Each commonsense knowledge or fact can be
represented as a triplet, such as <dog, isa, animal>,
formingmillions of tripletswithin the knowledge base. Simi-
larly,ATOMIC is a commonsenseknowledgegraphwith 1.33
million everyday inferential knowledge tuples about entities
and events. It is represented in the form of IF-THEN state-
ments, like “if X pays Y a compliment, then Y will likely
return the compliment,” resulting millions of if-then state-
ments within the knowledge base.

While these knowledge representation frameworks have
been effectively utilized in many applications, one of main
limitations of these knowledge representation frameworks
is the lack of a cognitive-level connection. When humans
store commonsense knowledge, there are often underlying
connections that involve the relevance between concepts,
underlying reasoning, contextual information, and so on.
However, current knowledge representation methods typ-
ically only capture surface-level relationships and lack a
deep understanding of cognitive processes and underlying
thought mechanisms. Consequently, these frameworks may
not fully capture human cognitive levels in complex rea-
soning tasks, limiting their application and effectiveness in
some complex reasoning and inference tasks. Moreover, in
implementing commonsense knowledge representation, the
absence of cognitive-level connections can lead to challenges
in identifying meaningful patterns and relationships within
data, resulting in suboptimal performance, limited accuracy,
and increased risk of erroneous conclusions. This ineffi-
ciency may further lead to resource wastage and ultimately
diminish effectiveness in addressing complex reasoning tasks
across various AI applications. Additionally, in expanding
commonsense knowledge, the lack of cognitive-level con-
nections remains problematic. This deficiency can hinder
scalability, organization, and resource utilization, limiting the
framework’s adaptability to evolving data and challenges.

Conceptual Primitives

Conceptual primitives can be defined as concepts that can-
not be defined in terms of other concepts in an integration
data model which provides an overview of data, thereby
forming foundations for definitions of other concepts [31].
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Conceptual primitives have been of practical and theoretical
interest to researchers in computer science [12], linguis-
tics [11, 15] and psychology [13]. Such research reports
that the decomposition of meanings into lower-level parts
is essential for conceptualization.

We apply the idea of conceptual primitives to construct
commonsense knowledge by comprising a small core of
primitive commonsense concepts and relations, linked to a
much more extensive base of factual knowledge instances.
Naturally, humans tend to categorize things, events, and peo-
ple by identifying common patterns and forms, which is the
basis of conceptual dependency theory. Thus, commonsense
knowledge bases built upon conceptual primitives possess
the greater potential to facilitate reasoning tasks. Recently,
Cambria et al. [19] constructed SenticNet by generalizing
words and multi-word expressions into primitives and super-
primitives annotated with emotion labels via pre-trained
language models, which achieved better performances on
various affective tasks and showed the power of conceptual
primitives. Unlike SenticNet, which focuses on sentiment
knowledge, we build PrimeNet to cover a broader range of
general commonsense knowledge based on conceptual prim-
itives.

Future Directions

PrimeNet is grounded in fundamental conceptual principles
that are consistent with human reasoning patterns. It has
greater potential than current knowledge bases to enhance
AI’s reasoning capabilities, particularly in response to the
growing demand for more intricate reasoning tasks in the era
of large language models. In this section, we discuss sev-
eral applications where PrimeNet can aid in enhancing AI’s
reasoning abilities.

Logical Reasoning
Logical reasoning is recognized as central to human cogni-
tion and intelligence [98]. It mainly consists of two reasoning
types [99], which are deductive reasoning and inductive rea-
soning. Previously logical reasoning is mostly investigated
in the classic AI field and used formal language as knowl-
edge representation. Recently there’s a trend of research on
deductive reasoning [100] and inductive reasoning [101] that
use natural language as knowledge representation, which has
various advantages over the previous paradigm of formal lan-
guage. We argue that PrimeNet could be of essential effect
on the research of logical reasoning.

One of the most common types of deductive reasoning is
syllogism, which consists of a major and a minor premise
and a conclusion. For example, the premises can be “All
men are mortal; Socrates is a man,” and the conclusion is
“Socrates is mortal.” Here, PrimeNet can provide the minor

premises since it includes a huge amount of taxonomic infor-
mation. Conversely, PrimeNet is also beneficial to inductive
reasoning. One of the most common types of inductive
reasoning is inductive generalization, which is about sample-
to-population generation. For example, with the observation
“Socrates is mortal,” inductive reasoning might lead to a
conclusion that “All men are mortal.” Here, the taxonomic
information of PrimeNet can provide important information
for an inductive reasoning system to potentially generalize
over a larger population.

Implicit Reasoning
Implicit reasoning is a challenging task which does not con-
tain explicitly clues for designing reasoning strategies. For
example, “Did Aristotle use a laptop?” is an implicit ques-
tion [102], and it requires to infer the strategy for answering
the implicit question, i.e., temporal comparison. Recently,
AI systems based on pre-trained language models have
achieved impressive performance in answering explicit ques-
tions, even surpassing human performance in some datasets
(e.g., SQuAD [103] and TriviaQA [104]). However, they
are failed to answer implicit questions, e.g., the accuracy
of answering implicit questions is only 66% [102].

A key property of implicit reasoning is the diverse strate-
gies. Humans cannot pre-define all of the strategies due to
the complexity of scenarios. To conduct implicit reasoning,
PrimeNet has the potential to build a finite set of strate-
gies at the primitive level, and apply the primitive-based
strategies on concepts and entities. For example, the implicit
questions, e.g., “Did Aristotle Use a Laptop?,” “Did Shake-
speare play guitar?,” and “Was NATO involved inWorldWar
I?,” have the same reasoning strategies in the primitive level,
e.g., COMPARE(TIME(Entity-1), TIME(Entity-2)). Primi-
tives can be used to conduct implicit reasoning by providing
the basic cognitive processes ormental operations that under-
lie our ability to reason implicitly.

Neurosymbolic Computing
The integration of Symbolism and Connectionism, known as
neurosymbolic computing, is widely recognized as a booster
for the next generation of AI [105]. Neurosymbolic com-
puting combines neural networks and symbolic reasoning to
take advantage of their strengths, such as better interpretabil-
ity and improved generalization and trustfulness. However,
it is bottlenecked by symbolic knowledge acquisition [106].

One way to alleviate this bottleneck is to first transfer spe-
cific concepts to primitives, and conduct symbolic computa-
tion on the primitives level [19, 107]. In this case, the required
symbolic knowledge can be exponentially decreased. Here
PrimeNet is of essential effect because the huge taxonomic
information in PrimeNet is (mostly) necessary to the process
of transformation from concepts to primitives. PrimeNet is
capable of linking concepts and entities to a small set of prim-
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itives. Hence, it strengthens the neurosymbolic computing
system in compositional generalizaition, enabling it to deal
with the infinite number of states in the real world [108].

Conclusion

We developed a new commonsense knowledge base, termed
PrimeNet, based on conceptual dependency theory. Unlike
existing knowledge bases, PrimeNet is constructed based on
a small core of conceptual primitives and relations, linked to
an extensive set of concepts and entities, which is suited for
supporting higher-level inference. Our studies demonstrate
that PrimeNet contains high-quality commonsense knowl-
edge that can be used for commonsense reasoning in different
downstream tasks thanks to the many intuitive functions
developed. In the future, we aim to broaden the scope of
commonsense knowledge using generative AI models and
will continue to develop additional PrimeNet functions to
facilitate commonsense reasoning across a wider range of
applications, domains, and languages.
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