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A B S T R A C T

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in
this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that
proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities.
On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation
of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment
analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual in-
formation from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate
reduction) over currently used concatenation. The implementation of our method is publicly available in the
form of open-source code.

1. Introduction

On numerous social media platforms, such as YouTube, Facebook,
or Instagram, people share their opinions on all kinds of topics in the
form of posts, images, and video clips. With the proliferation of
smartphones and tablets, which has greatly boosted content sharing,
people increasingly share their opinions on newly released products or
on other topics in form of video reviews or comments. This is an ex-
cellent opportunity for large companies to capitalize on, by extracting
user sentiment, suggestions, and complaints on their products from
these video reviews. This information also opens new horizons to im-
proving our quality of life by making informed decisions on the choice
of products we buy, services we use, places we visit, or movies we
watch basing on the experience and opinions of other users.

Videos convey information through three channels: audio, video,
and text (in the form of speech). Mining opinions from this plethora of
multimodal data calls for a solid multimodal sentiment analysis tech-
nology. One of the major problems faced in multimodal sentiment
analysis is the fusion of features pertaining to different modalities. For
this, the majority of the recent works in multimodal sentiment analysis
have simply concatenated the feature vectors of different modalities.
However, this does not take into account that different modalities may
carry conflicting information. We hypothesize that the fusion method

we present in this paper deals with this issue better, and present ex-
perimental evidence showing improvement over simple concatenation
of feature vectors. Also, following the state of the art [1], we employ
recurrent neural network (RNN) to propagate contextual information
between utterances in a video clip, which significantly improves the
classification results and outperforms the state of the art by a significant
margin of 1–2% for all the modality combinations.

In our method, we first obtain unimodal features for each utterance
for all three modalities. Then, using RNN we extract context-aware
utterance features. Thus, we transform the context-aware utterance
vectors to the vectors of the same dimensionality. We assume that these
transformed vectors contain abstract features representing the attri-
butes relevant to sentiment classification. Next, we compare and com-
bine each bimodal combination of these abstract features using fully-
connected layers. This yields fused bimodal feature vectors. Similarly to
the unimodal case, we use RNN to generate context-aware features.
Finally, we combine these bimodal vectors into a trimodal vector using,
again, fully-connected layers and use a RNN to pass contextual in-
formation between them. We empirically show that the feature vectors
obtained in this manner are more useful for the sentiment classification
task.

The implementation of our method is publicly available in the form
of open-source code.1
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This paper is structured as follows: Section 2 briefly discusses im-
portant previous work in multimodal feature fusion; Section 3 describes
our method in details; Section 4 reports the results of our experiments
and discuss their implications; finally, Section 5 concludes the paper
and discusses future work.

2. Related work

In recent years, sentiment analysis has become increasingly popular
for processing social media data on online communities, blogs, wikis,
microblogging platforms, and other online collaborative media [2].
Sentiment analysis is a branch of affective computing research [3] that
aims to classify text – but sometimes also audio and video [4] – into
either positive or negative – but sometimes also neutral [5]. Most of the
literature is on English language but recently an increasing number of
works are tackling the multilinguality issue [6], especially in booming
online languages such as Chinese [7]. Sentiment analysis techniques
can be broadly categorized into symbolic and sub-symbolic approaches:
the former include the use of lexicons [8], ontologies [9], and semantic
networks [10] to encode the polarity associated with words and mul-
tiword expressions; the latter consist of supervised [11], semi-su-
pervised [12] and unsupervised [13] machine learning techniques that
perform sentiment classification based on word co-occurrence fre-
quencies. Among these, the most popular recently are algorithms based
on deep neural networks [14] and generative adversarial net-
works [15].

While most works approach it as a simple categorization problem,
sentiment analysis is actually a suitcase research problem [16] that
requires tackling many NLP tasks, including word polarity dis-
ambiguation [17], subjectivity detection [18], personality recogni-
tion [19], microtext normalization [20], concept extraction [21], time
tagging [22], and aspect extraction [23].

Sentiment analysis has raised growing interest both within the sci-
entific community, leading to many exciting open challenges, as well as
in the business world, due to the remarkable benefits to be had from
financial [24] and political [25] forecasting, e-health [26] and e-
tourism [27], user profiling [28] and community detection [29],
manufacturing and supply chain applications [30], human commu-
nication comprehension [31] and dialogue systems [32], etc.

In the field of emotion recognition, early works by De Silva et al.
[33] and Chen et al. [34] showed that fusion of audio and visual sys-
tems, creating a bimodal signal, yielded a higher accuracy than any
unimodal system. Such fusion has been analyzed at both feature
level [35] and decision level [36].

Although there is much work done on audio-visual fusion for
emotion recognition, exploring contribution of text along with audio
and visual modalities in multimodal emotion detection has been little
explored. Wollmer et al. [37] and Rozgic et al. [38] fused information
from audio, visual and textual modalities to extract emotion and sen-
timent. Metallinou et al. [39] and Eyben et al. [40] fused audio and
textual modalities for emotion recognition. Both approaches relied on a
feature-level fusion. Wu and Liang [41] fused audio and textual clues at
decision level. Poria et al. [42] uses convolutional neural network
(CNN) to extract features from the modalities and then employs mul-
tiple-kernel learning (MKL) for sentiment analysis. The current state of
the art, set forth by Poria et al. [1], extracts contextual information
from the surrounding utterances using long short-term memory (LSTM).
Poria et al. [3] fuses different modalities with deep learning-based

tools. Zadeh et al. [43] uses tensor fusion. Poria et al. [44] further
extends upon the ensemble of CNN and MKL.

Unlike existing approaches, which use simple concatenation based
early fusion [42,45] and non-trainable tensors based fusion [43], this
work proposes a hierarchical fusion capable of learning the bimodal
and trimodal correlations for data fusion using deep neural networks.
The method is end-to-end and, in order to accomplish the fusion, it can
be plugged into any deep neural network based multimodal sentiment
analysis framework.

3. Our method

In this section, we discuss our novel methodology behind solving
the sentiment classification problem. First we discuss the overview of
our method and then we discuss the whole method in details, step by
step.

3.1. Overview

3.1.1. Unimodal feature extraction
We extract utterance-level features for three modalities. This step is

discussed in Section 3.2.

3.1.2. Multimodal fusion
Problems of early fusion. The majority of the work on multimodal data
use concatenation, or early fusion (Fig. 1), as their fusion strategy. The
problem with this simplistic approach is that it cannot filter out and
conflicting or redundant information obtained from different
modalities. To address this major issue, we devise an hierarchical
approach which proceeds from unimodal to bimodal vectors and then
bimodal to trimodal vectors.

Bimodal fusion. We fuse the utterance feature vectors for each bimodal
combination, i.e., T+V, T+A, and A+V. This step is depicted in Fig. 2
and discussed in details in Section 3.4.1. We use the penultimate layer
for Fig. 2 as bimodal features.

Trimodal fusion. We fuse the three bimodal features to obtain trimodal
feature as depicted in Fig. 3.2 This step is discussed in details in
Section 3.4.2.

Addition of context. We also improve the quality of feature vectors (both
unimodal and multimodal) by incorporating information from
surrounding utterances using RNN. We model the context using gated
recurrent unit (GRU) as depicted in Fig. 4. The details of context
modeling is discussed in Section 3.3 and the following subsections.

Classification. We classify the feature vectors using a softmax layer.

3.2. Unimodal feature extraction

In this section, we discuss the method of feature extraction for three
different modalities: audio, video, and text.

3.2.1. Textual feature extraction
The textual data is obtained from the transcripts of the videos. We

Fig. 1. Utterance-level early fusion, or simple concatenation.

2 Figure adapted from [51] with permission.
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apply a deep Convolutional Neural Networks (CNN) [46] on each ut-
terance to extract textual features. Each utterance in the text is re-
presented as an array of pre-trained 300-dimensional word2vec vec-
tors [47]. Further, the utterances are truncated or padded with null
vectors to have exactly 50 words.

Next, these utterances as array of vectors are passed through two
different convolutional layers; first layer having two filters of size 3 and
4 respectively with 50 feature maps each and the second layer has a
filter of size 2 with 100 feature maps. Each convolutional layer is fol-
lowed by a max-pooling layer with window 2×2.

The output of the second max-pooling layer is fed to a fully-con-
nected layer with 500 neurons with a rectified linear unit (ReLU) [48]
activation, followed by softmax output. The output of the penultimate
fully-connected layer is used as the textual feature. The translation of
convolution filter over makes the CNN learn abstract features and with
each subsequent layer the context of the features expands further.

3.2.2. Audio feature extraction
The audio feature extraction process is performed at 30 Hz frame

rate with 100 ms sliding window. We use openSMILE [49], which is
capable of automatic pitch and voice intensity extraction, for audio
feature extraction. Prior to feature extraction audio signals are

processed with voice intensity thresholding and voice normalization.
Specifically, we use Z-standardization for voice normalization. In order
to filter out audio segments without voice, we threshold voice intensity.
OpenSMILE is used to perform both these steps. Using openSMILE we
extract several Low Level Descriptors (LLD) (e.g., pitch , voice intensity)
and various statistical functionals of them (e.g., amplitude mean, ar-
ithmetic mean, root quadratic mean, standard deviation, flatness,
skewness, kurtosis, quartiles, inter-quartile ranges, and linear regres-
sion slope). “IS13-ComParE” configuration file of openSMILE is used to
for our purposes. Finally, we extracted total 6392 features from each
input audio segment.

3.2.3. Visual feature extraction
To extract visual features, we focus not only on feature extraction

from each video frame but also try to model temporal features across
frames. To achieve this, we use 3D-CNN on the video. 3D-CNNs have
been successful in the past, specially in the field of object classification
on 3D data [50]. Its state-of-the-art performance on such tasks moti-
vates its use in this paper.

Let the video be called ∈ × × ×vid ,f h w3 where 3 represents the three
RGB channels of an image and f, h, andw denote the cardinality,
height, and width of the frames, respectively. A 3D convolutional filter,

Fig. 2. Utterance-level bimodal fusion.

Fig. 3. Utterance-level trimodal hierarchical fusion.
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named ∈ × × × ×f ,lt
f f f f3m d h w is applied to this video, where, similar to a

2D-CNN, the filter translates across the video and generates the con-
volution output ∈ × × − + × − + × − +convout

f f f h f w f3 ( 1) ( 1) ( 1)m d h w . Here, fm, fd, fh,
and fw denote number of feature maps, depth of filter, height of filter,
and width of filter, respectively. Finally, we apply max-pooling opera-
tion to the convout, which selects the most relevant features. This op-
eration is applied only to the last three dimensions of convout. This is
followed by a dense layer and softmax computation. The activations of
this layer is used as the overall video features for each utterance video.

In our experiments, we receive the best results with filter dimen-
sions =f 32m and =f f f, , 5d h w . Also, for the max-pooling, we set the
window size as 3× 3×3 and the succeeding dense layer with 300
neurons.

3.3. Context modeling

Utterances in the videos are semantically dependent on each other.
In other words, complete meaning of an utterance may be determined
by taking preceding utterances into consideration. We call this the
context of an utterance. Following Poria et al. [1], we use RNN, spe-
cifically GRU3 to model semantic dependency among the utterances in a
video.

Let the following items represent unimodal features:
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where =N maximum number of utterances in a video. We pad the
shorter videos with dummy utterances represented by null vectors of
corresponding length. For each modality, we feed the unimodal utter-
ance features fm (where m∈ {A, V, T}) (discussed in Section 3.2) of a
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outputs Fmt as context-aware unimodal features for each modality.
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N Dm. Thus, the con-
text-aware multimodal features can be defined as

=
=
=

F GRU f
F GRU f
F GRU f

( ),
( ),
( ).

A A A

V V V

T T T

3.4. Multimodal fusion

In this section, we use context-aware unimodal features FA, FV, and
FT to a unified feature space.

The unimodal features may have different dimensions, i.e.,
DA≠ DV≠DT. Thus, we map them to the same dimension, say D (we
obtained best results with =D 400), using fully-connected layer as
follows:
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where x∈ {V, A, T} and clt
x are scalars for all = ⋯l D1, 2, , and

= ⋯t N1, 2, , . Also, in gx the rows represent the utterances and the
columns the feature values. We can see these values clt

x as more abstract
feature values derived from fundamental feature values (which are the
components of fA, fV, and fT). For example, an abstract feature can be
the angriness of a speaker in a video. We can infer the degree of an-
griness from visual features (fV; facial muscle movements), acoustic
features (fA, such as pitch and raised voice), or textual features (fT, such
as the language and choice of words). Therefore, the degree of angri-
ness can be represented by c ,lt

x where x is A, V, or T, l is some fixed
integer between 1 and D, and t is some fixed integer between 1 and N.

Now, the evaluation of abstract feature values from all the mod-
alities may not have the same merit or may even contradict each other.
Hence, we need the network to make comparison among the feature
values derived from different modalities to make a more refined eva-
luation of the degree of anger. To this end, we take each bimodal
combination (which are audio–video, audio–text, and video–text) at a
time and compare and combine each of their respective abstract feature
values (i.e. clt

V with c ,lt
T clt

V with c ,lt
A and clt

A with clt
T) using fully-connected

layers as follows:
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VT 2 and

bl
VT is scalar, for all = ⋯l D1, 2, , and = ⋯t N1, 2, , . We hypothesize

that it will enable the network to compare the decisions from each
modality against the others and help achieve a better fusion of mod-
alities.

3.4.1. Bimodal fusion
Eqs. (1)(3) are used for bimodal fusion. The bimodal fused features

for video–audio, audio–text, video–text are defined as
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We further employ GRUm(Section 3.3) (m∈ {VA, VT, TA}), to in-
corporate contextual information among the utterances in a video with
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FVA, FVT, and FTA are context-aware bimodal features represented as
vectors and Int

m is scalar for = ⋯n D1, 2, , ,2 =D 500,2 = ⋯t N1, 2, , ,
and =m VA,VT,TA.

3.4.2. Trimodal fusion
We combine all three modalities using fully-connected layers as3 LSTM does not perform well.
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follows:
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AVT

lt
VA

lt
AT

lt
VT

l
AVT

where ∈wl
AVT 3 and bl

AVT is a scalar for all = ⋯l D1, 2, , 2 and
= ⋯t N1, 2, , . So, we define the fused features as
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where = ⋯f z z z( , , , ),AVTt t t D t1 2 2 znt is scalar for = ⋯n D1, 2, , 2 and
= ⋯t N1, 2, , .
Similarly to bimodal fusion (Section 3.4.1), after trimodal fusion we

pass the fused features through GRUAVT to incorporate contextual in-
formation in them, which yields

= ⋯ =F F F F GRU f( , , , ) ( ),AVT AVT AVT AVT N AVT AVT1 2 ( )

where = ⋯F Z Z Z( , , , ),AVTt t t D t1 2 3 Znt is scalar for = ⋯n D1, 2, , ,3
=D 550,3 = ⋯t N1, 2, , , and FAVT is the context-aware trimodal feature

vector.

3.5. Classification

In order to perform classification, we feed the fused features Fmt

(where =m AV VT TA AVT, , , or and = ⋯t N1, 2, , ) to a softmax
layer with =C 2 outputs. The classifier can be described as follows:

�
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where ∈ ×W ,softmax
C D ∈b ,softmax
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and =̂y estimated class value.

3.6. Training

We employ categorical cross-entropy as loss function (J) for
training,
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Adam [52] is used as optimizer due to its ability to adapt learning
rate for each parameter individually. We train the network for 200
epochs with early stopping, where we optimize the parameter set
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where =M A V T VA VT TA AVT{ , , , , , , }, =M A V T{ , , },1 and
=M VA VT TA{ , , }2 . Algorithm 1 summarizes our method.4

4. Experiments

4.1. Dataset details

Most research works in multimodal sentiment analysis are per-
formed on datasets where train and test splits may share certain
speakers. Since, each individual has an unique way of expressing

emotions and sentiments, finding generic and person-independent fea-
tures for sentiment analysis is crucial. Table 1 shows the train and test
split for the datasets used.

4.1.1. CMU-MOSI
CMU-MOSI dataset [53] is rich in sentimental expressions, where 89

people review various topics in English. The videos are segmented into
utterances where each utterance is annotated with scores between − 3
(strongly negative) and + 3 (strongly positive) by five annotators. We
took the average of these five annotations as the sentiment polarity and
considered only two classes (positive and negative). Given every in-
dividual’s unique way of expressing sentiments, real world applications
should be able to model generic person independent features and be
robust to person variance. To this end, we perform person-independent
experiments to emulate unseen conditions. Our train/test splits of the
dataset are completely disjoint with respect to speakers. The train/va-
lidation set consists of the first 62 individuals in the dataset. The test set
contains opinionated videos by rest of the 31 speakers. In particular,
1447 and 752 utterances are used for training and test respectively.

4.1.2. IEMOCAP
IEMOCAP [54] contains two way conversations among ten speakers,

segmented into utterances. The utterances are tagged with the labels
anger, happiness, sadness, neutral, excitement, frustration, fear, sur-
prise, and other. We consider the first four ones to compare with the
state of the art [1] and other works. It contains 1083 angry, 1630
happy, 1083 sad, and 1683 neutral videos. Only the videos by the first
eight speakers are considered for training.

4.2. Baselines

We compare our method with the following strong baselines.

Early fusion. We extract unimodal features (Section 3.2) and simply
concatenate them to produce multimodal features. Followed by support
vector machine (SVM) being applied on this feature vector for the final
sentiment classification.

Method from [42]. We have implemented and compared our method
with the approach proposed by Poria et al. [42]. In their approach, they
extracted visual features using CLM-Z, audio features using openSMILE,
and textual features using CNN. MKL was then applied to the features
obtained from concatenation of the unimodal features. However, they
did not conduct speaker independent experiments.

In order to perform a fair comparison with [42], we employ our
fusion method on the features extracted by Poria et al. [42].

Method from [1]. We have compared our method with [45], which
takes advantage of contextual information obtained from the
surrounding utterances. This context modeling is achieved using
LSTM. We reran the experiments of Poria et al. [45] without using
SVM for classification since using SVM with neural networks is usually
discouraged. This provides a fair comparison with our model which
does not use SVM.

Method from [43]. In [43], they proposed a trimodal fusion method
based on the tensors. We have also compared our method with their. In
particular, their dataset configuration was different than us so we have
adapted their publicly available code5 and employed that on our
dataset.

4 Implementation of this algorithm is available at http://github.com/
senticnet. 5 https://github.com/A2Zadeh/TensorFusionNetwork.
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4.3. Experimental setting

We considered two variants of experimental setup while evaluating
our model.

HFusion. In this setup, we evaluated hierarchical fusion without
context-aware features with CMU-MOSI dataset. We removed all the
GRUs from the model described in Sections 3.4 and 3.3 forwarded
utterance specific features directly to the next layer. This setup is
depicted in Fig. 3.

CHFusion. This setup is exactly as the model described in Section 3.

4.4. Results and discussion

We discuss the results for the different experimental settings dis-
cussed in Section 4.3.

4.4.1. Hierarchical fusion (HFusion)
The results of our experiments are presented in Table 2. We eval-

uated this setup with CMU-MOSI dataset (Section 4.1.1) and two fea-
ture sets: the feature set used in [42] and the set of unimodal features
discussed in Section 3.2.

Our model outperformed [42], which employed MKL, for all bi-
modal and trimodal scenarios by a margin of 1–1.8%. This leads us to
present two observations. Firstly, the features used in [42] are inferior
to the features extracted in our approach. Second, our hierarchical fu-
sion method is better than their fusion method.

It is already established in the literature [42,55] that multimodal
analysis outperforms unimodal analysis. We also observe the same
trend in our experiments where trimodal and bimodal classifiers out-
perform unimodal classifiers. The textual modality performed best
among others with a higher unimodal classification accuracy of 75%.
Although other modalities contribute to improve the performance of
multimodal classifiers, that contribution is little in compare to the
textual modality.

On the other hand, we compared our model with early fusion

(Section 4.2) for aforementioned feature sets (Section 3.2). Our fusion
mechanism consistently outperforms early fusion for all combination of
modalities. This supports our hypothesis that our hierarchical fusion
method captures the inter-relation among the modalities and produce
better performance vector than early fusion. Text is the strongest in-
dividual modality, and we observe that the text modality paired with
remaining two modalities results in consistent performance improve-
ment.

Overall, the results give a strong indication that the comparison
among the abstract feature values dampens the effect of less important
modalities, which was our hypothesis. For example, we can notice that
for early fusion T+V and T+A both yield the same performance.
However, with our method text with video performs better than text
with audio, which is more aligned with our expectations, since facial
muscle movements usually carry more emotional nuances than voice.

In particular, we observe that our model outperformed all the strong
baselines mentioned above. The method by Poria et al. [42] is only able
to fuse using concatenation. Our proposed method outperformed their
approach by a significant margin; thanks to the power of hierarchical
fusion which proves the capability of our method in modeling bimodal
and trimodal correlations. However on the other hand, the method
by Zadeh et al. [43] is capable of fusing the modalities using a tensor.
Interestingly our method also outperformed them and we think the
reason is the capability of bimodal fusion and use that for trimodal
fusion. Tensor fusion network is incapable to learn the weights of the
bimodal and trimodal correlations in the fusion. Tensor Fusion is
mathematically formed by an outer product, it has no learn-able
parameters. Wherein our method learns the weights automatically
using a neural network (Eq. (1)–(3)).

4.4.2. Context-aware hierarchical fusion (CHFusion)
The results of this experiment are shown in Table 3. This setting

fully utilizes the model described in Section 3. We applied this ex-
perimental setting for two datasets, namely CMU-MOSI (Section 4.1.1)
and IEMOCAP (Section 4.1.2). We used the feature set discussed in
Section 3.2, which was also used by Poria et al. [1]. As expected our
method outperformed the simple early fusion based fusion by Poria
et al. [42], tensor fusion by Zadeh et al. [43]. The method by Poria et al.
[1] used a scheme to learn contextual features from the surrounding
features. However, as a method of fusion they adapted simple con-
catenation based fusion method by Poria et al. [42]. As discussed in
Section 3.3, we employed their contextual feature extraction frame-
work and integrated our proposed fusion method to that. This has
helped us to outperform Poria et al. [1] by significant margin thanks to
the hierarchical fusion (HFusion).

CMU-MOSI. We achieve 1–2% performance improvement over the
state of the art [1] for all the modality combinations having textual
component. For A+V modality combination we achieve better but
similar performance to the state of the art. We suspect that it is due to
both audio and video modality being significantly less informative than
textual modality. It is evident from the unimodal performance where
we observe that textual modality on its own performs around 21%
better than both audio and video modality. Also, audio and video
modality performs close to majority baseline. On the other hand, it is

Table 1
Class distribution of datasets in both train and test splits.

Dataset Train Test

pos. neg. happy anger sad neu. pos. neg. happy anger sad neu.

MOSI 709 738 – – – – 467 285 – – – –
IEMOCAP – – 1194 933 839 1324 – – 433 157 238 380

pos. = positive, neg. = negative, neu. = neutral

Table 2
Comparison in terms of accuracy of Hierarchical Fusion (HFusion) with other
fusion methods for CMU-MOSI dataset; bold font signifies best accuracy for the
corresponding feature set and modality or modalities, where T stands for text, V
for video, and A for audio. SOTA1 = Poria et al. [42], SOTA2 = Zadeh
et al. [43].

Modality
combination

[42] feature set Our feature set

SOTA1 SOTA2 HFusion Early
fusion

SOTA2 HFusion

T N/A 75.0%
V N/A 55.3%
A N/A 56.9%
T+V 73.2% 73.8% 74.4% 77.1% 77.4% 77.8%
T+A 73.2% 73.5% 74.2% 77.1% 76.3% 77.3%
A+V 55.7% 56.2% 57.5% 56.5% 56.1% 56.8%
A+V+T 73.5% 71.2% 74.6% 77.0% 77.3% 77.9%
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important to notice that with all modalities combined we achieve about
3.5% higher accuracy than text alone.

For example, consider the following utterance: so overall new moon
even with the bigger better budgets huh it was still too long. The speaker
discusses her opinion on the movie Twilight New Moon. Textually the
utterance is abundant with positive words however audio and video
comprises of a frown which is observed by the hierarchical fusion based
model.

IEMOCAP. As the IEMOCAP dataset contains four distinct emotion
categories, in the last layer of the network we used a softmax classifier
whose output dimension is set to 4. In order to perform classification on
IEMOCAP dataset we feed the fused features Fmt (where

=m AV VT TA AVT, , , or and = ⋯t N1, 2, , ) to a softmax layer
with =C 4 outputs. The classifier can be described as follows:

�

�̂
= +
=

W F b
y j

softmax( ),
argmax( [ ]),

softmax mt softmax

j

where ∈ ×W ,softmax
D4 ∈b ,softmax

4 � ∈ ,4 =j class value (0 or 1 or 2
or 3), and =̂y estimated class value.

Here as well, we achieve performance improvement consistent with
CMU-MOSI. This method performs 1–2.4% better than the state of the
art for all the modality combinations. Also, trimodal accuracy is 3%
higher than the same for textual modality. Since, IEMOCAP dataset
imbalanced, we also present the f-score for each modality combination
for a better evaluation. One key observation for IEMOCAP dataset is
that its A+V modality combination performs significantly better than
the same of CMU-MOSI dataset. We think that this is due to the audio
and video modality of IEMOCAP being richer than the same of CMU-
MOSI. The performance difference with another strong baseline [43] is
even more ranging from 2.1% to 3% on CMU-MOSI dataset and 2.2–5%
on IEMOCAP dataset. This again confirms the superiority of the hier-
archical fusion in compare to Zadeh et al. [43]. We think this is mainly
because of learning the weights of bimodal and trimodal correlation
(representing the degree of correlations) calculations at the time of
fusion while Tensor Fusion Network (TFN) just relies on the non-
trainable outer product of tensors to model such correlations for fusion.
Additionally, we present class-wise accuracy and f-score for IEMOCAP
for trimodal (A+V+T) scenario in Table 4.

4.4.3. HFusion vs. CHFusion
We compare HFusion and CHFusion models over CMU-MOSI da-

taset. We observe that CHFusion performs 1–2% better than HFusion
model for all the modality combinations. This performance boost is
achieved by the inclusion of utterance-level contextual information in
HFusion model by adding GRUs in different levels of fusion hierarchy.

5. Conclusion

Multimodal fusion strategy is an important issue in multimodal
sentiment analysis. However, little work has been done so far in this
direction. In this paper, we have presented a novel and comprehensive
fusion strategy. Our method outperforms the widely used early fusion
on both datasets typically used to test multimodal sentiment analysis
methods. Moreover, with the addition of context modeling with GRU,
our method outperforms the state of the art in multimodal sentiment
analysis and emotion detection by significant margin.

In our future work, we plan to improve the quality of unimodal
features, especially textual features, which will further improve the
accuracy of classification. We will also experiment with more sophis-
ticated network architectures.
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