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Abstract

espite the recent advance-
ments in dialogue systems,
persona-driven chatbots are

still in their infancy. Previous studies
on persona-driven dialogue generation
demonstrated its ability in generating
responses that contain more detailed
persona information. However, the
challenge of maintaining persona con-
sistency and contextual coherence
still persists in persona-driven dialogue
generation. Moreover, current methods
have limitations in processing multi-
source inputs and identifying interlocu-
tor intents due to the absence of trust-
worthy labels and effective modeling.
Additionally, numerous approaches rely
on pre-trained large-scale language
models that require costly computa-
tional resources. To address these chal-
lenges, a lightweight hierarchical intent-
inferring pointer network is proposed
for multi-source persona-driven dia-
logue generation. The proposed method
involves detecting interlocutor intents in
chitchat and utilizing pseudo labeling
and natural language inference techni-
ques to generate intent labels. Our
model 18 evaluated on a benchmark
dataset PersonaChat. The experimental
results show that our model outperforms
the strongest baseline by 13.47% and

4.28% 1in terms of persona consistency
and contextual coherence, respectively.

l. Introduction

Advances in dialogue generation have
been propelled by recent developments
in deep learning and the availability of
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large-scale open-domain conversation

data [1], [2]. Meanwhile, persona-
driven dialogue generation, an emerg-
ing area of controllable dialogue

generation [3], has gained increasing
attention in the field of natural language
generation [4], as it enforces response
dialogue

generation 1s defined as a task of training

specificity. Persona-driven

a dialogue agent to generate responses
while incorporating pre-defined per-
sona information. Generally, persona
profiles a person’s occupation, educa-
tional background, hobbies, family, and
social relations, etc. A dialogue agent
with pre-defined personas would pro-
vide sufficient common ground [5], [6]
for human-computer interaction, which
is recognized as one of the crucial
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factors for successful communication
between interlocutors [7]. For example,
a musician is likely to talk more with
people about musical knowledge as
they may share a common interest.

Here, the persona of music interest
serves as a shared topic through which
the interlocutors can learn about each
other and establish a positive relation-
ship. Responses from a persona-driven
dialogue agent are more grounded as
they closely align with pre-defined per-
sona information, whereas those gener-
ated by a non-controllable dialogue
agent may be groundless and inconsis-
tent [8], [9], e.g., I live in California and
I live in New York may appear in differ-
ent turns of the same dialogue. This
is because non-controllable dialogue
agents generate responses based on the
probability distribution learned from
training data, disregarding the actual
persona information.
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Some  persona-driven  systems
adopted a universal encoder-decoder
framework [10] or lacked consistent
language modeling [8]. They employed
a general objective function to simulta-
neously learn the generation and per-
sona fusion tasks. However, the general
objective function cannot coherently
incorporate persona information in an
utterance context, because the input
sources, 1.e., persona and historical
utterances from different interlocutors,
have different information significance
and learning patterns in the generation
and fusion tasks. Thus, persona inconsis-
tency [11] remains a common problem
among the existing methods. Although
intent detection has been widely
employed in task-oriented dialogue sys-
tems [12], [13], it is rarely incorporated
into open-domain persona-driven dia-
logue systems. Persona-oriented intent
detection in the open domain is particu-
larly challenging due to the lack of
ground-truth labels and the ambiguity
of persona information selection in
generating contextualized responses.
Overlooking interlocutor intents in a
response in the open domain may result
in a failure to incorporate the appropri-
ate persona attribute. Moreover, several
state-of-the-art
driven dialogue generation utilized pre-
trained language models (PLMs) [14],
which typically with  high
costs. The
even more

studies on persona-

come
computational problem

becomes severe when
deploying a localized dialogue system
on personal devices.

Motivated by the importance of uti-
lizing persona information and under-
standing interlocutor intents, we develop
a lightweight dialogue system to detect
and track interlocutor intents and to gen-
erate context-coherent and persona-con-
sistent dialogue responses based on pre-
defined personas. To learn information
from multi-sources, 1.e., persona, and his-
torical utterances from a speaker and an
agent, separate encoders are employed.
Additionally, a well-designed pointer
generator 1s proposed to fuse information
from multiple encoders.

To detect and track interlocutor

intents, the intent detector and tracker

modules are proposed, trained with
pseudo labels and a multi-task learning
paradigm. Furthermore, unlike state-of-
the-art baselines, our generation model
does not rely on PLMs, making it a
more lightweight and computationally
efficient solution. Specifically, a) sepa-
rate encoders are employed to capture
the distinct distributions of utterances
from different interlocutors and persona
descriptions. Then, a global encoder is
introduced to extract the global context
and retain long-term memory for
multi-turn inputs. b) For interlocutor
intent inference, the natural language
inference (INLI) technique, a semi-
supervised learning (SSL) approach, and
pseudo labeling are utilized to automati-
cally annotate the interlocutor intent.
Next, an intent tracker is designed as an
auxiliary module to enhance the repre-
sentation capacity of the dialogue agent.
In addition, a multi-task learning-based
exterior intent detector is trained to
infer the interlocutor intent. ¢) In the
decoder, a multi-source pointer-gener-
ator is proposed to leverage the useful
information from multiple input sources
and filter out irrelevant textual noises.
d) In the generation task, the weighted
sum of losses is computed for the gener-
ator and the intent tracker to update the
model parameters. It simultaneously
strengthens the representation capacity
and the generation capability of the
model.

Our method is evaluated on a pub-
licly available dataset PersonaChat [10].
The automatic evaluation results show
that our model outperforms the PLM-
based methods in a wide range of
automatic evaluation metrics, such as
BLEU [15] (+0.151), METEOR [16]
(+1.155), ROUGE-L [17] (+2.066), F1
[18] (+1.800), greedy (+0.86), and
(+1.13) embedding-based

evaluation metrics [19]. The human

extrema
evaluation results indicate that our
model surpasses the strong baselines in
diverse evaluation dimensions, such
as contextual coherence (+0.0967),
inverse duplicate score (+0.0200), and
persona consistency (+0.0934). Overall,
our model’s parameter size is approxi-

mately only 20% of that of the strongest
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GPT-2-based model [14]|. Our ablation

study demonstrates the utilities of differ-

ent technical components of our model
in encoding, intent inference, pseudo
labeling, and decoding. Finally, hyper-
parameters used in our model are sys-
tematically analyzed.

The contributions of our work are
summarized as follows:

Jd A lightweight hierarchical intent-
inferring pointer network is put for-
ward for multi-source and multi-
turn consistent persona-driven dia-
logue generation.

Jd A method is proposed to detect

intents  for

interlocutor open-

domain conversation, which 1s

trained by the generated intent labels

via pseudo labeling and NLI
techniques.

d The experimental results show that
our model outperforms baselines in
various evaluation metrics, including
persona-consistency and contextual
coherence.

The remainder of this work is orga-
nized as follows: Section II briefly illus-
trates related work; next, Section III
explains the mechanism of our model;
later, Section IV and Section V describe
experiments and results, respectively;
next, Section VI proposes a discussion

of such results; finally, Section VII pro-

poses concluding remarks.

Il. Related Work

A. Persona-Driven Dialogue
Generation

Open-domain dialogue systems or chit-
chat bots have obtained growing atten-
tion from academia and industry.
Chitchat agents face several challenges,
including: 1) inconsistent persona [9], 2)
the absence of an explicit long-term
memory [8], and 3) a tendency to gen-
erate vague or uninformative responses,
such as I don’t know |20]. Such 1issues can
result in unsatisfactory and unappealing
between
human and dialogue agents. Thus,
Zhang et al. [10] established a Persona-

Chat dataset for training a more specific,

conversational experiences

personal, consistent, and engaging dia-
logue agent, alleviating the common



issues of chitchat models. It provides a
benchmark and resource for persona-
driven dialogue generation.

Based on the persona-driven dia-
logue generation [10], several research
works were presented to deal with the
common issues in dialogue generation.
Li et al. [21] improved logical consis-
tency and reduced repetitions within
utterances as well as the overuse of fre-

through unlikelihood

works focused on

quent words

training. Some
enhancing the performance of personal-
ized dialogue agents through well-
designed frameworks. For example,
Young et al. [22] combined task-ori-
ented and open-domain dialogue gen-
eration tasks, enabling the dialogue
agent to achieve task objectives and
generate responses with more personal-

Song et al. [1]
exploited pre-trained NLI classifiers to

1zed i1nformation.

calculate the deep reinforcement learn-
ing reward in terms of consistency,

which

to gEHEI‘HtE morc¢ PEI‘EGI]EI.—CDI]SiStEI]t

enabled the dialogue agent

responses.

However, their research employed
PLMs to improve the quality of gener-
ated responses, resulting in increased
computational complexity. Further-
more, they neglected the potential
exploitation of user intent, which could
be a crucial factor in improving the
of generated

contextual coherence

IreSpoIscs.

B. User Intent Classification

User intent classification (UIC) has
gained popularity in the development
of task-oriented dialogue systems,
because it has been demonstrated to
improve the user experience during
interactions with these systems [13]. For
example, Wang et al. [13] developed a
meta lifelong learning framework for
large-scale extensible UIC. It enables
the dialogue agent to continuously
adapt to new tasks. Ni et al. [23]
two-hierarchy
framework to learn turn- and global-

designed a learning
level intents, i.e., conversation goals.

In contrast, there i1s comparatively
less research on detecting the interlocu-
tor intent in chitchat scenarios, e.g.,

persona-driven dialogue generation.
Overlooking user intents in chitchat
may make dialogue agents fail to meet
the conversation needs, leading to nega-
tive user attitudes toward the dialogue
system [24|. However, the existing
approaches tailored for UIC in task-ori-
ented dialogue generation could not be
directly applied to chitchat agents, as
the intent categories are more diverse
and less well-defined. According to
Bickmore and Cassell [25], chitchat or
small talk is utilized as a relational strat-
egy to establish a sense of trust with
users in conversational interactions. It
involves conversations that prioritize
interpersonal objectives while either
de-emphasizing or disregarding task-
oriented goals. Therefore, we regard
the interlocutor intent in persona-
driven dialogues as de-emphasized task
goals and propose to solve the lack of
reliable intent labels through pseudo
labeling and NLI techniques.

C. Pointer Network

The pointer network, which was put
forward in the paper [26], aimed to
modulate a content-based attention
mechanism over inputs. It has been
applied in a wide range of NLP research
areas, e.g., text summanzation |[27],
question answering [28], and dialogue
generation [29]. The pointer network
enables the model to copy words from
the source text via pointing and retain
the capability to generate new words.
Most of the existing research works uti-
lize a pointer network for problems
with single-source inputs. However,
they are not designed for processing
multi-source inputs.

Recently, some researchers have
improved the pointer network architec-
ture to handle multi-source inputs. Sun
et al. [30] proposed a multi-source
pointer network with an additional
knowledge encoder for product title
summarization. It can copy words not
only from the product title inputs but
also from texts containing background
knowledge. However, this improve-
ment comes at the cost of forfeiting the
pointer network’s ability to generate
new words beyond the input texts.

Yavuz et al. [31] advanced a hierarchical
pointer network by extending the
pointer generator [32]. It copes with
the multi-source inputs by balancing
between two existing contents to be
copied first, and then choosing between
generating new words and copying
the existing tokens. This hierarchical
method is based on a binary mechanism,
which is highly dependent on expert
experience and hard to extend when

fed with additional

Moreover, as a stacked attention mech-

source Inputs.

anism [33], it may suffer from a vanish-

ing gradient problem [34].

lll. Methodology

A. Task Definition

PDG: The goal of persona-driven dia-
logue generation (PDG) is to learn a
controllable generative model to gener-
ate consistent persona-driven dialogues.
The task is defined as follows: Given a
set of agent’s persona texts U’ =
{ur,us,..., U’} and the dialogue
history of two interlocutors UY =
{Uf, uUs, ..., U.El’q_lﬁ}, the task is to
deliver a response R that is consistent
with the given persona U” and to avoid
the repetition of dialogue history U*.
Thus, a dialogue intent detector would
be applied to interlocutor intent infer-
ence before generation. Here, a denotes
the agent, b denotes the speaker, P
denotes the persona, and T denotes the
current time step.

PIT: Persona intent tracking (PIT)
is an information retrieval task over per-
sona descriptions. Supposing that a dia-
logue system decides to include persona
information in the current response, it
needs to select an appropriate persona
element U” from the persona descrip-
tion set U”. Intuitively, the selected
persona element should be relevant to
the local topic U}._, and avoid repeat-
ing previous persona elements that have
appeared 1n historical responses.

III: Interlocutor intent inference
(III) consists of a binary intent classifica-
tion task (BIC) and a PIT task. Given
the dialogue history U* and the per-
sona description set U”, the first step of
BIC is to decide whether the current
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FIGURE 1 The framework of HIPPL. The blue arrows mean that the relevant data flows exist in the training procedure only; the orange
ones correspond to the test procedure only; the black ones always exist during the whole procedure. Random disguising is randomly
changing the pseudo-intent label to another fake label with a pre-defined probability.

response should include persona infor-
mation. Then, an appropriate persona
element U’ should be selected in PIT
task. In this paper, an interlocutor intent
detector is designed for III task. The
intent detector consists of a binary
intent classifier for BIC and an intent
retriever for PIT,

B. Framework

The architecture of our hierarchical
intent-inferring pointer network with
pseudo labeling (HIPPL) is shown in
Figure 1. HIPPL mainly consists of
three technical components, namely,
generation, intent inference, and
pseudo labeling. The data flows within
and among the parts are introduced as
follows.

First, the input sequences, including
the dialogue history of two interlocu-
tos U? ={U;,U4,...,Us_,} and
persona descriptions U’ = {U;, UZ,

, Ut"} are encoded with interlocutor
encoders (IntEnc) in a hierarchical
interlocutor encoder module (HIE),
generating the word-level hidden states

', utterance-level hidden states ' and

global context # by

W, k' B = IntEnc(Uy, U, ..., Uy ),
(1)

where s € {a, b, P}, and L, is the num-
ber of utterances or persona elements.
IntEnc(-) is detailed in Section III-C.
Here, we regard the hidden state from
the speaker (h-_,) at the last time step
(T — 1) as the local topic.

As mtroduced before, interlocutor
intent inference 1s pivotal for a dialogue
agent to generate grounded responses.
Thus, a separate multi-task learning-
based intent detector (IntentDt) 1is
designed to select the intent UP out of
an intent set I = {U” U U}'} based on
dialogue history U”. U; is a padded
sequence, representing the persona-
irrelevant intent. As shown in (2), intent
labels Y and Y? are predicted by
IntentDt. Y} is a binary classification
label, indicating whether the intent is
relevant to the persona or not. Y7 is a
multi-class classification label, indicating
which persona element is selected from

U”. The selected intent is given by

Y, Y = IntentDt(U”, UY),
UP, if Y =
UP, if YP#0,i=Y?L.

2)

UP = (3)

IntentDt(+) is detailed in Section III-D.
After selecting U? according to (3), the

remaining intents in I is termed as
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persona complements U‘. Besides Y}’
and ?}fj, we also obtain word-level (1,
u‘) and utterance-level hidden states (i,

h) by selecting from hidden states (4"

and i) in (1).

The local topic, the global context
(ub._, and K¢, given by (1)), the pre-
dicted intent, and persona complements
(P, WP, u, and I selected by IntentDt)
are fed to a multi-source pointer-gener-
ator (MSPG) module. MSPG consists
of a multi-source attention (MSA) and a

(PG). MSPG is

designed based on an attention mecha-

pointer-generator

nism to copy and fuse the information
from multi-source inputs, 1i.e., the local
topic, the predicted intent, persona
complements, and the vocabulary distri-
bution p, from a decoder. Attention is
used because it can selectively focus on
informative contexts [35]. Therefore,
the MSPG should have two functions:
1) assigning different weights to the
tokens in the same input source through
computed attention distribution g, in
MSA,; 2) allocating different weights to

different input sources by computing

weights A, in PG.

‘Irupf — MSA(HP: H{}“—1 ) hpa hg: }’;l:jr{B)
(4)



In 4), y € {p,c, b}, u" = {u,u},
W = {1, K}, y™F is the embedding of
the generated word in step t — 1. Then,
weights A/ and A/ for different input
sources in PG are computed based on the
extracted information of the multi-source
inputs. The output probability P(y, =
w|UH, UP, y.,) ofa generated word w at
position ¢ is given by the weighted sum-

mation of the computed distributions:

P(}'I — wl UH‘] UP:P{I)

=N N Na 4N DY p(w).

Y o Lw=w Jwj=w
()

In (5), i: w; =w means to find i
where w; = w, v 1s the abbreviation for
vocabulary, and A! is a computed weight
for the decoder vocabulary. MSA and
PG are detailed in Section I1I-E. In addi-
tion, following HIE, there is a persona
intent tracker (IntentTr) trained to imi-
tate the function of IntentDt. IntentTr
predicts a multiple classification label Y7
Y? is used for selecting the intended per-
sona element U? out of persona descrip-
tions U”. This is an auxiliary NLI-
equivalent task to improve the represen-
tation capability of the model in the gen-
eration part. As Conneau et al. [36]
argued that the universal sentence repre-
sentation could be learned from the
supervised learning, based on the NLI
task, we believe the joint training of the
intent tracking module would benefit the
sentence representation learning of HIE.
[t is notable that the pseudo label Y7 for
training IntentDt and persona intent
tracker (IntentTr) is obtained by pseudo
labeling based on pre-trained RoDB-
ERTa-NLI [37]. The binary-class label
Y,” for the BIC task and the multi-class
label Y for the PIT task can be obtained
by transforming Y”'. In addition, the data
flow in the training procedure has differ-
ences from that in the test procedure.
During the training procedure, Y is also
used for retrieving the corresponding
hidden states ¥, ¥, and h‘, u‘ for the true
interlocutor intent and persona comple-
ments. In this paper, the variables with
p as a superscript are considered to con-
tain the true interlocutor intent informa-
tion; those with ¢ as a superscript are

Algorithm 1. Sketch of HIPPL.

Result: generated responses

and U°”.

4 fori — 1 toe number of samples do
5 s h%, h9 — IntEnc(U", UP)
if train then

if (num, < 7,) A (YF # 0) then
YP — 0

O 00 ~1 O

11 Y? — random(1, M)\ Y?
12  else
13 YP — yP

14 else
15  YP — IntentDt(U", UP)
16 end

17 Lookup uP,h? u®, h® according to Y”
18 Generate the response

19 Compute the generation loss £q4
20 if train then
21  YP — IntentTr(U",UP)
22 Compute the auxiliary loss
Lt — CrossEntropy (Y, YP)

24 end
25 end

considered to contain true persona com-
plements. These hidden states are fed to a
multi-source pointer-generator (MSPG).
Moreover, we notice the difference
between the predicted intent label Y?”
from IntentDt and the pseudo label Y7,
and that between the pseudo label Y”
from RoBERTA-NLI and the ground-
truth label. Thus, random disguising 1s
designed to generate disguised labels Y,
which is controlled by pre-defined prob-
abilities (73, T,,), to improve the generali-
zation of MSPG. Random disguising can
be categorized as an adversarial attack
technique [38]. It is similar to generating
uniform white noise in computer vision.
Two hyper-parameters 7, and 7, are
defined, since the accuracy of IntentDt
predicting the binary-class label Y} and
the multi-class label i’:: is difterent.
The different data flows with random

Randomly generate num; and nump,

UR — MSPG(uP, hP, uf, h%, ub_,, h9)

Input: dialogue history U", persona descriptions U”, target response UR, random
disguising thresholds 7, and 7, interlocutor encoders IntEnc, intent tracker
IntentTr, multi-source pointer-generator MSPG, intent detector IntentDt,
pre-trained RoBERTa-NLI model RoBERTa, and cross-entropy loss CrossEntropy

1 Randomly initialize IntEnc, IntentTr, MSPG, and IntentDt.
2 Generate pseudo labels Y* from pseudo labeling based on RoBERTa with inputs U

3 Pre-train IntentDt with inputs U, U”, and labels Y”.

/* random disguising */

10  elseif (num, < ) A (numpy, < ) then

23 Optimize IntEnc,IntentTr, and MSPG according to agLg + ot Lt

disguising in the training and test process
are elaborated in Algorithm 1.

C. Hierarchical Interlocutor Encoder
Module

The bidirectional gated recurrent unit
(BiGRU) [39] is utilized to encode an
utterance. The last hidden states of
forward and backward GRUs are
concatenated as the context of an
encoded utterance, i.e., h= |h,hl,
where k refers to the current time step
for an encoder. Here, three indepen-
dent BiGRU encoders are used to
extract the latent representations of
utterances h’, h%, and h* from a speaker,
an agent, and the persona, respectively:

W', i = BiGRU*(w), (6)

where s € {a,b, P}. w' = (Wia---wwij)

is an embedded utterance or persona
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FIGURE 2 The architecture of our multi-task intent retriever.

element, given by w* = Emb(U*). U* =
(Wiso oo s W5y WY ). W) s the 7™
word in U’. Emb(-) is the embedding
layer. ' = (uj,..,u; ) is the generated
hidden states of all words in U*. u’ is
named as word-level hidden states. /’ is
the last hidden state obtained from feed-
ing w’ into the encoder BIGRU(-).
Then, a forward GRU (GRU#(-)) is
employed to encode the extracted utter-
ance hidden states A = (h?,h;, ey
h'._,) chronologically, yielding the con-
textual hidden states h*:

B = GRU*(h). (7)

Here, I at the last time step is taken as
the global context.

D. Intent Detector Module

The intent detector module (IntentDt)
is used to infer the intent of the inter-
locutor (the III task). It works as an
independent

model, providing the

selected persona information for the
downstream MSPG. It is found that a
speaker (user) does not always want to
learn about the persona of the other
interlocutor (agent) in each turn of the
dialogue. For example, a speaker may
want to end the dialogue or receive

Therefore,

our intent detector module is trained to

compliments sometimes.

select the appropriate element from an
intent set I = {Uf, U;,...,L{{}}U
{U}'}, where U} is represented by the
padding index in this work.

Binary intent classifier. The binary
intent classifier is employed to predict
whether a speaker wants to receive per-
sona-relevant responses (BIC task). The
concatenated context U~ and persona

descriptions U” are input into ALBERT

[40] to obtain context-aware utterance-
level embeddings u.. u, € Rd", where

d, 15 the embedding dimension of

ALBERT. Then, u, 1s fed to the BIERU
[41] for binary classification.

Multi-task intent retriever. In
those cases when a speaker is recognized
as needing persona-relevant responses, a
multi-task intent retriever is employed
to select a persona element U that is
the most relevant to the context UZ,.
A multi-task learning paradigm s
exploited, as it allows the model to
share knowledge between different
learning tasks [42], [43]. As shown in
Figure 2, the multi-task intent retriever
is composed of two BiERU classifiers,
sharing the same utterance-embedding
BiLSTM [44] layer. Omne classifier
BiERU™ 1s designed for the PIT task
and the other BiERU" is tailored for the
BIC task as an auxiliary module.

Here, the
concatenated with each persona element

U” and fed into a one-layer BILSTM to

obtain an utterance-level embedding of

H .
context U,:T 18

a context-persona-element pair uj,.

u,, =BiILSTM
(UL Uliss - U UY),
(8)
where k < T — 1 and
ug,, ifi=1
H k—1]13
= { Us_1 IfEF: 0 ?)

E. Multi-Source Pointer-Generator
Module

Although the existing pointer networks
enhance dialogue generation [29], [45],
they may lose the existing history
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information or the predicted intent
information, as they cannot handle the
multi-source inputs. In addition, the
related multi-source pointer network
[30] 1s designed for extraction, rather
than generation. To this end, a multi-
source  pointer-generator  module
(MSPQG) is proposed for the pointer net-
work to exploit the key information
in the dialogue history, interlocutor
intents, and persona complements,
while maintaining its capability to pro-
duce novel content.

As mentioned in the HIE module in
Section III-C, we introduce a persona
encoder besides the encoders for the
two interlocutors. Thus, the model can
utilize words from multiple sources,
such as the dialogue interlocutor
encoders, and the persona encoder. As
Figure 3 shows, during the prediction
of a current word by the decoder, it
takes into account the probability of the
token in four distinct aspects: 1) the
local topic I prefer my cat how about you,
2) the predicted interlocutor intent I
love animals and I have two dogs, 3) per-
sona complements I enjoy cooking and
baking... I grew up by the ocean, and 4) the
distribution over the fixed vocabulary.
This is achieved by a multi-source
attention mechanism and a multi-source

pointer generator.

E1) Multi-Source Attention

For an ongoing dialogue, the dialogue
agent needs to focus on four elements:
1) a global context, 2) a local topic, 3)
the interlocutor intent, and 4) persona
complements. The hidden state A is
used as the global context, obtained
from encoding the series of hidden
states (h?,h;, . ,h‘!}_1) by contextual
encoders. Then, the global context A
concatenated with the encoded persona

complements /4° is transformed into the

initial hidden state dy of the decoder
through a rectified layer [46]

do = ReLU(W,[¥; 1)), (10)

where  ReLU(x) = max(0,x), and
W, € R**? denotes trainable parame-
ters. d is the dimension of hidden states

from encoders and the decoder.
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FIGURE 3 Overview of our proposed multi-source pointer-generator. The decoder hidden state 4, is utilized to attend the local topic, the
interlocutor intent, and persona complements to compute distributions for copying words from them. The decoder also delivers a
distribution over all tokens in the vocabulary. All three distributions are integrated to generate the overall distribution at each time step .

As mentioned, a local topic u{}_l =

(Wr_10 W10 ---st7_qy,) Is the
word-level hidden states of U%_l from
the speaker encoder BIGRU". ub. | €
R**"% denotes the local topic. I is the
sentence length of UY._,. The predicted
intent f = (u‘?, ug, ey uzj) is selected
from the word-level hidden states u”
according to intent labels, i’f and i’}ﬁ ,
from IntentDt in a testing procedure,
while pseudo labels are used in a train-
ing procedure. Here, u? € R is the
predicted intent. [, denotes the sentence
length of the predicted intent. Persona
complements u° = (uS, u5, . u!.) are
the remaining contents in u’ after the
selection, where uf € R2dxk . 1s the
total number of tokens in persona com-
plements. In order to figure out the sig-
nificance of different tokens in each
input source, their attention distribution

is computed as follows:

i

a, = softmax(e;) (1

)

d = sofimax(e) (12)
@ = sqﬁmax(ef) (13)
e = vaﬂh( W,,_,HE}_LI- + Wid, + bayy)
(14)
& = v Ttanh(WPil + Wld, + ¥,,)
(15)

Efk = vamﬂh(qui + Whd, + v

atm)

(16)

where v

Lot W, WP, Wi, WE, bum,
and b, are trainable parameters. As
(15) and (16) show, the predicted intent
w’ and persona complements u‘ share
the same attention mechanism because
their data distribution is assumed to be
similar. a, 18 the attention distribution
for the encoded local topic (the speaker
encoder at time step f), 4; is the atten-
tion distribution for the encoded pre-
dicted intent, and .:IE 1s the attention
distribution for encoded persona com-
plements; d; is the decoder hidden state

at time step f, computed as:

d, = GRU"(q,,d,_1) (17)
a = Wyla—;5¢ 701 ), (18)

where d,_1 1s the decoder hidden state
EMB i1s the
embedding of the predicted Wnrd Vi1
at the time step t— 1. GRU’(-) is a
nonlinear function, forward GRU in
this work. W, € R (4d+de)xde

trainable parameters; d, is the dimension

at the time step t—1; y~

denotes

of embeddings from an embedding
layer. The local topic vector ¢_; and
the intent vector ¢_, are given by

¢ = Z c:,,-ui- (19)

d =) du, (20)

where a,; and 4, are weights in 4, and 4/

at the position i, respectively. Similarly,

the persona complement vector ::E =

ﬂii'
f!!

gatmg weights A later.

cagu; will be used to generate soft

To maintain the generation capacity

of the model, vocabulary distribution
It is obtained by
concatenating the local topic vector ¢
with the decoder hidden state d,, then
feeding them through two fully con-

nected layers:

is also necessary.

Py = sqﬁmax( V"( V[d!; q] + by) + bi,),

21)

'e R™Y b, €
R% are parameters to be

where IV € R34
R?, and b, €
learned. p, 1s the probability distribution
over all words in the vocabulary, pro-

viding the final distribution from which
to predict the word w:

p(w) = p,(w). (22)

E2) Multi-Source Pointer-Generator
Our multi-source pointer-generator
network allows for both copying words
via pointing multiple source inputs and
generating words from a fixed corpus
vocabulary. Soft gating weights AN
X, and A\ are introduced to choose
among the following possible actions:
1) copying a word that has the largest
attention weight in 4, from the local
topic U?-_,; 2) copying a word that has
the largest attention weight in & from
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the predicted interlocutor intent U?; 3)
copying a word that has the largest
attention weight in 4 from persona
complements U¢; 4) generating a word

that has the largest probability in p,
from the vocabulary.

P(Y! — “"l UH: UP:Y«:::)

=X D) @+ N D) 4

Ly =1 Jw=w
+ A a+ A Y po(we) (23)
Lwp=w kw,=w

Here, M =1—-X— )X — ). Intui-
tively, A\’, A, A%, and A¢ should auto-
matically adjust according to the local
topic vector ¢, the interlocutor intent
vector ¢, the persona complements
vector ci, the current decoder hidden
state d;, and the embedding of the last

predicted word y{%:

A= S:ﬁmax(ﬂﬁﬁ + chf 04)
+ Wi + Wadi+ Wiy2)
where W), Wf, Wi, Wf, and W)}: are
learnable parameters with the output
size. of 4. Thus, \é€ R*
A= [ M, 00 ).
As shown in Figure 3, A\ acts as

where

a dynamic soft switch to extract differ-
ent information from multiple source
encoders. When the decoder is generat-
ing y;, our MSPG enables the decoder
to consider the tokens in the interlocu-
tor intent (e.g., fwo dogs), the additional
information in persona complements
(e.g., the ocean), and the local topic (e.g.,
cat) besides the words in p, via adjusting
A. Finally, the predicted token y, (e.g.,
two in Figure 3) is the output at the time
step L.

Here, different soft gating weights
(NP and X°) and separate attention mech-
anisms (on the encoded interlocutor
intent 4’ and persona complements u°)
are employed. This is because the pre-
dicted interlocutor intent may contain
the information that meets the speaker’s
needs and should be allocated with more
attention. Additionally, the predicted

interlocutor intent is generated from

IntentDt which is trained with pseudo
labeling. Thus, the attention mechanism
on persona complements can mitigate

the errors caused by IntentDt and
improve the generalization capacity in
the generation part.

F. Intent Tracker Module

As an auxiliary module in the genera-
tion part, the intent tracker (IntentTT) is
designed to improve the representation
performance of HIE. IntentTr is a mod-
ified NLI classifier. It plays two roles,
namely, matching and selecting. The
matching role is to identify the consis-
tency between an encoded persona
description k" and the agent’s previous
target responses h in the history of a
given dialogue, where j < T — 1, while
the selecting role is to choose a persona
element h” that is the most relevant to
an encoded local topic h%._,. It is
assumed that: 1) the NLI category
between hf and ' should be entailment
(E) or neutral (N); 2) to avoid repetition,
the probability of an agent mentioning
the persona element UP that has
appeared in previous responses should
be reduced.

The neural tensor network [47] is
utilized to extract the relationship of
between the persona element h and
the local topic h{}_p and the relation-
ship o, between the persona element K
and agent’s previous response /.

ﬂf-’ = vFLR(hE}_l T:’M“”’*’]hi-pI
Vb)) 09
0 = HFLR(P{;?TM“:th

J
+ Vi (15 h] + b,) (26)
Here, LR(-) denotes LeakyReLU [48],
MK e RIxdxk 3¢ 3 tensor, k is the
number of slices, and v, € R* integrates
the results of each slice. The others are
the standard form of a neural network:
v, € R¥2% and b, € R® are learnable
parameters.

The match score between the dia-
logue history and the i persona ele-
ment is computed by:

s; = softmax(o® — 2;;10‘}). (27)
The matched persona element index is
obtained with the maximal score, 1i.e.,
UP = U, where i = argmax(s;).
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Algorithm 2. Pseudo Labeling.

Data: current step k, target response U¥,
persona descriptions U”, persona
descriptions size |U|, threshold g,
pre-trained RoBERTa-NLI model
RoBERTa

Result: intent label Y”

1 fori — 1to|U°|+ 1do
2 Xx; — RoBERTa(Uy)
3 x{ < RoBERTa(U?)
4 scry; — cos_sim(x;,x;)

end

SClmax, Imax +— arg Max;scry;

if scr,,,, > 6 then

YP — o

W 00 1 v

else
10 YP—0
11 end

G. Pseudo Labeling

Given the unavailability of a persona-
driven dialogue dataset that contains
interlocutor intent labels, we resort
to pseudo labeling [49], a semi-super-
(SSL)
automatically generate the intent

label Y. RoBERTa-NLI [37] is

used as an automatic annotator to

vised learning approach, to

generate the intent label according to
Algorithm 2.

Taking the k¥ turn of a dialogue as
an example, we can obtain the target
response U;S and persona descriptions
U?. The persona descriptions U” keep
unchanged in the same dialogue but
vary among different dialogues. The
embeddings for the

target response UX and each persona

utterance-level

element x~ are obtained from the
pre-trained RoBERTa-NLI model,
RoBERTa(-). The cosine similarity is
computed for each (U, x’) pair, and
the maximum wvalue scr,, with the
index i,,,, among them is determined. If
Scryae €xceeds the threshold 6, 1, 1s
used as the pseudo intent label Y.
Otherwise, 0 1s set as the pseudo intent
label Y?, which means the interlocutor
expects persona-irrelevant responses or
messages in the current context. cos_sim
in Algorithm 2 denotes the cosine simi-
larity function.



TABLE | Statistics of PersonaChat dataset.

DATASET PERSONA DIALOGUE UTTERANCE

Train 955 8,939 131,438

Valid 100 1,000 15,602

Test 100 968 15,024

Total 1,155 10,907 162,064
H. Training and Optimization IV. Experiment
Generation part. The training loss for A Datasets

the generator i1s defined as a negative
log-likelihood of the target sequence:

1 <. (1 <&
L=x (12
i=1 =1 (28)

— logp(y; = wi;|U™, U, }n-,{s)) ,

where L is the length of the target
sequence. N is the number of samples

(i.e., dialogue turns). w; is the target

it
" sample at time step .

word in 7
The auxiliary persona intent tracker

is trained by the cross-entropy listwise

loss function L,, which is a listwise
approach to learning to rank [50]:

L, = CrossEntropy(Y,, Y"). (29)

The loss for the generation task 1s the
weighted sum of the two parts:

Loc=a,l,+aL, (30)

where @, and «, are hyper-parameters.
Intent inference part. The binary

intent classifier in the intent inference

part is trained by the cross-entropy loss:

Ly, = CrossEntropy( i’f : Y;j ).
(31)

The persona intent retriever in the

intent inference part is trained on the
basis of multi-task learning (BIC and
PIT). The loss of PIT is defined as the

LambdalLoss [50], which is another list-

wise approach to learning to rank.
L, = LambdaLoss(Y., Y") (32)

of the

Therefore, the loss intent

retriever is defined as:
Lr =L+ a,L,, (33)

where @;, and @, are hyper-parameters.

Persona-Chat Persona-driven dia-

logue
conducted on a recently released dataset

PersonaChat [10]. The dialogues were

collected in a crowdsourced generation

generation experiments were

manner, where randomly paired
crowdworkers were asked to interact
according to the given persona.

The dataset has 162,064 utterances
over 10,907 dialogues and has a set of
1,155 personas. Each sample contains a
dialogue history of up to 15 utterances,
a target response and a persona consist-
ing of four to five persona descriptions.
The detailed statistics of the training,
validation,

viewed in Table 1.

and testing sets can be

B. Baselines

Jd S2SA [51] 1s a Seq2Seq dialogue
generation model with an attention
mechanism [52]. Besides, it uses
both bag-of-words and sentences as
targets.

J Per-S2SA is a variant of the S2SA
[51] model which prepends all per-
sona texts to the input utterance or
message. The prepending operation
1s similar to that in the Seq2Seq

baseline model in [10].
Jd GPMN [10] 1s a Generative Profile

Memory Network that encodes per-
sona as individual memory represen-
tations in a memory network.

Jd Transformer [53] is one of the
state-of-the-art sequence transduc-
tion models. In the experiment,
persona texts and messages are

concatenated as the input.

0 REGS [54]

Generation Step) is an adversarially

(Reward for Every

trained model using Monte Carlo

search for response generation.

Persona texts are used as context

information when training this
model.

d DeepCopy [31] is a hierarchical
pointer network that extends the
pointer-generator to copy tokens
from relevant persona descriptions.

Jd RCDG [1] 15 a Reinforcement
Learning-based Consistent Dialogue
Generation model. It regards rank-
ing retrieved responses as a rein-
forcement task and exploits NLI
signals from response-persona pairs
as rewards to improve the response

consistency of dialogue agents.

Jd TransferTransfo [55] is a single-
input OpenAl GPT, which uses
token type embedding to differenti-
ate different parts of a single
concatenated input, e.g., persona
description, historical conversation,
and corresponding response. In the
experiment, GPT2 [56] replaces the
original GPT, which is denoted as
TransferGPT2.

4 MI-GPT [57] also employs the
OpenAl GPT in both the encoder
and the decoder, where average
pooling is used as the attention
fusion method.

Jd GPT2-MAF [14] employs a pre-
trained OpenAl GPT2 model for
persona-driven dialogue generation.

The results given by the optimal

fusion methods are reported.

C. Setups

In the generation part, all the employed
utterance encoders are two-layer BiG-
RUs; the global context encoder is a
two-layer forward GRU; the decoder
uses a single-layer forward GRU. The
hidden state size of the above encoders
and the decoder 1s 512. Embeddings of
size 300 were randomly initialized and
updated during the training process.
The wvocabulary size i1s 20348. The
model parameters were optimized using
Adam [58] with an initial learning rate
of 0.0003. The Ilearning rate was
decayed with a cosine annealing [59].
The training batch size i1s 64. The
hyper-parameter weights were set as
o, =1 and «; = 0.5. Besides, hyper-

parameters were set to T, = 0.15 and
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T,, = 0.35 in random disguising. In the
intent inference part, an ALBERT-
small [40] was used for the context-
aware utterance embedding in the
intent detector module. The experi-
mental setup followed [60] for the
intent detector. The hyper-parameters
were set to @, =1 and a, = 1. The
average results of five runs are reported.
The p-values of automatic evaluation
results are below 0.05 significance level.

D. Evaluation Metrics

Automatic evaluation metrics and

human evaluation were employed
to evaluate the quality of generated
responses.

Automatic Evaluation. Although
there is no universally applicable metric
for evaluating the quality of generated
responses, several indicators, such as
BLEU and embedding metrics, can be
used to evaluate the relevance between
the generated and the ground-truth
response. All the automatic evaluation
metrics range from O to 1. The results
are reported in percentage.

BLEU [15]. BLEU measures the
n-gram overlap between the ground
truth and the generated response. A
higher BLEU score indicates better gen-
eration quality, and vice versa. The
BLEU score computed by mteval-v14.pl’
is reported.

METEOR [16]. METEOR is based
on the harmonic mean of the unigram
precision and recall, where recall is
weighted higher than precision. Difter-
ent from BLEU, the unigram alignment
between a reference and a generated
sentence also considers matching results
after Porter stemming [61] and Word-
Net synonymy [62], besides exact
matches.

ROUGE-L [17]. ROUGE-L repre-
sents the recall-oriented understudy of
gisting evaluation based on the longest
common subsequence. It considers sen-
tence-level structure similarity and
identifies the longest co-occurring in

SEqUCIICE N—-ZTaITls.

'[Online]. Available: https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/
mteval-v14.pl (Accessed on Dec. 2021)

F1 [18]. F1 score computes the har-
monic mean of the unigram precision
and recall in natural language genera-
tion [63].

Embedding Metrics. According to
[64], embedding average (Avg.),
embedding greedy (Grd.), and embed-
ding extrema (Ext.) are employed as
evaluation metrics to measure the qual-
ity of generated dialogues. The scores of
these metrics depend on word embed-
dings. They are the measurement of the
relevance between a generated response
and a target response. GloVe [65]
100D word vectors are used in this
experiment.

Human Evaluation. We invited
three English-speaking participants to
conduct human evaluation. Judges were
employed to score 150 dialogue turns
that were randomly sampled from the
generated responses from three different
aspects.:

Contextual coherence. A response is
contextual-coherent if it is systemati-
cally or logically connected with the
dialogue context. The range of the con-
textual coherence score is {1,2,3}. A
higher score means higher contextual
coherence.

Inverse duplicate. Inverse duplicate
whether the
response 18 duplicated with the dialogue

measures generated
history or not. The corresponding score
is 0 (duplicated) and 1 (not duplicated),
respectively.

metric

Persona  consistency. This

measures whether the response contains
should

be consistent with the pre-defined

persona information that
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TABLE Il Evaluation results based on n-gram automatic metrics.

MODEL BLEU METEOR ROUGE-L F1
S2SA 3.373 10.162 19.219 22.123
Per-S2SA 3.266 10.292 18.962 21911
TransferTransfo 2.054 7.672 - -
MI-GPT 3.151° 8.112 - -
TransferGPT2 3.597 11.379 19.054 18.899
GPT2-MAF 4147 8.988" 19.428 22.619
HIPPLgr, 4.236 12.483 21.494 24.429
HIPPL jpert 4.298 12.532 21.275 24.244
* The results of the models are reported in [14]. Underlined results are the best among baselines but inferior to
HIPPL.

persona. The generated response 1is
scored 1 if meeting the condition, and
0 otherwise.

V. Result

A. Automatic Evaluation for Dialogue

Generation

Tables II and III show the results of
HIPPL and baseline models in n-gram-
based metrics and embedding metrics,
respectively. The last two rows are the
results of HIPPL. HIPPL 4., refers to
HIPPL in this paper; HIPPLjy, is a vari-
ant where the ALBERT is replaced with
a BiLSTM in the binary intent classifier.
As shown in Table II, our lightweight
model HIPPL;,, outperforms all the
baselines in n-gram automatic metrics.
Compared with the strongest baselines,
HIPPL;,, yields 0.089 BLEU gains over
GPT2-MAF, 1.104 METEOR gains
over TransterGPT2, 2.066 ROUGE-L
gains over GPT2-MAF, and 1.800 F1
gains over GPT2-MAF. Noticeably,
most of these baselines are developed
upon PLMs, 1e., GPT and GPT2.
Whereas HIPPL,,, is based on the
GRU and the BIERU. Compared with

non-pre-trained language model-based

methods, e.g., S2SA, HIPPL,,, demon-

strated larger gains in BLEU,
METEOR, ROUGE-L, and FI1,
achieving improvements of 0.863,

2.321, 2.275, and 2.306, respectively.
When we employed a lightweight
PLM, ALBERT, instead of a BiLSTM
for the utterance embedding in the
intent detector module (IntentDt), fur-

ther improvements in BLEU (+0.062)



TABLE lli Evaluation results on embedding metrics.

MODEL GRD. AVG. EXT.
DeepCopy* 43.2 62.1 45.1
GPMN® 45.7 65.3 43.2
REGS? 44.2 64.3 44.8
S25A 65.18 67.99 51.23
Per-525A 65.12 67.79 51.54
Transformer® 43.9 63.4 43.6
RCDGpert” 47.2 66.9 46.8
TransferGPT2 64.79 66.34 50.78
GPT2-MAF 65.15 68.47 51.26
HIPP L, 66.01 67.48 52.39
HIPPLgpert 65.94 67.73 52.35
? The results are reported in [1]. Underlined results are the best among baselines but inferior to
HIPPL (except for Avg.).

TABLE IV Human evaluation results.

MODEL C-CHR. IN-DPL. P-CNS.
S2SA 1.9667 0.8767 0.6067
Per-S2SA 2.0467 0.8533 0.6933
TransferGPT2 2.2600 0.8433 0.6700
GPT2-MAF 2.1167 0.8633 0.6367
HIPPL 2.3567 0.8967 0.7867

persona consistency, respectively.

Note: c-chr., in-dpl., p-cns. are the abbreviation for contextual coherence, inverse duplicate score, and

Underlined results are the best among baselines but inferior to HIPPL

TABLE V IntentDt results in interlocutor intent inference task.

can be

and METEOR (+0.051)
observed in the comparison between
HIPPL,,, and HIPPL ;.

In embedding metrics, HIPPLy,
achieves better results than GPT2-
MAF in greedy and extrema evalua-
tion dimensions, yielding an average
gain of 1.00. In embedding average,
HIPPL,, 1s slightly lower than
GPT2-MAF. Compared with GPT2-
MAF, the average gain of HIPPL,,
is 0.331n the three embedding metrics.
Employing ALBERT (HIPPL )
delivers slight extra gains in embed-
ding average.

MODEL NUM. OF PARAM. ACCURACY
Binary intent classifier (BiLSTM-based) 1.16M 0.7314
Binary intent classifier (ALBERT-based) 12.86M 0.8353
Multi-task intent retriever 2.32M 0.5156

In addition, our model i1s more
parameter-efficient than the PLMs. The
numbers of parameters of Trans-
terGPT2 and GPT2-MAF are 124M
and 327M, respectively. While our
model HIPPL ., has 75M parameters
(59.94M in generation + 15.19M in
intent inference); HIPPL;,, has 63M
parameters (59.94M 1n generation +
3.49M in intent inference). Thus, the
parameter size of HIPPL,,,, is approxi-
mately only 20% of that of GPT2-MAF
(the strongest baseline), while HIPPL;,,
performs better in diverse automatic
evaluation metrics.

B. Human Evaluation for Dialogue
Generation

Considering the code availability of
each method, we selected S2SA, per-
S2SA, TransferGPT2, and GPT2-MAF
as baseline models. The human evalua-
tion results are shown in Table IV. The
Fleissa Kappa [66] was calculated to
measure the inter-rater consistency.
The Fleissa Kappa for contextual coher-
ence, inverse duplicate, and persona
consistency are 0.4266, 0.8620, and
0.4579, indicating moderate agreement,
almost perfect, and moderate agreement,
respectively. This is because contextual
coherence and persona consistency
metrics are more subjective than inverse
duplicate. It is inherently harder to
obtain perfect agreements in the two
aforementioned metrics compared to
inverse duplicate.

It is found that our model outper-
forms the baseline models in c-chr., in-
dpl., and p-cns. scores. This means the
responses from HIPPL are more con-
textual-coherent and less duplicated
with the dialogue history, and they con-

tain more persona information that is
consistent with the pre-defined persona.
HIPPL outperforms TransferGPT2 in
c-chr. (+0.0967), surpasses S2SA in in-
dpl (+0.0200), and exceeds Per-S2SA
(+0.0934). TransterGPT2
tends to generate contents that are
duplicated with the dialogue history.

It diminishes the coherence of the

iIn p-cns.

resulting in monotonous
S2SA
avoids the duplication through trivial

responses,
human-computer interactions.

responses, €.g., i am not sure or i do not
have a lot of time. However, they are usu-
ally not appropriate for the current con-
text and do not contain persona
information, which may make the
interlocutor lose interest or feel
offended. Per-S2SA is better at generat-
ing persona-consistent responses, but it
suffers from duplicated or incoherent

contents.

C. Interlocutor Intent Inference

The performance of our IntentDt was
reported in Table V for the III task. The
accuracy for the binary intent classifier
measures the closeness of the predicted

NOVEMBER 2024 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 73



TABLE VI Ablation study of HIPPL.
MODEL  GLOBAL ENC. PRD. INT. P.CMP. FULLP. RND.DSG. ORACLE BLEU
M; 0 1 1 0 1 0 3.437
M, 1 0 0 1 1 0 3.099
M; 1 1 0 0 1 0 3.36
M, 1 1 1 0 0 0 3.82
M;s 1 1 0 0 0 1 4.17
Mg 1 1 1 0 0 1 3.52
HIPPL 1 1 1 0 1 0 4.185
Note: global enc,, prd. int,, p. cmp., full p., and rnd. dsg. are abbreviations for the global encoder, the predicted intent,
persona complements, full persona descriptions, and random disguising.
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FIGURE 4 Parameter analysis of «..

intent Y/ to the pseudo label Y/; the

accuracy for the multi-task intent
retriever measures how close the
predicted intent Y? is to the pseudo

label Y7
In Section III-D, the ALBERT-
based binary intent classifier was
introduced. The BiLSTM-based binary
intent classifier differs from the
ALBERT-based classifier by replacing
the ALBERT with a BiLSTM for gen-
erating the utterance-level embedding.
This is also the only difference between
HIPPLy,, and HIPPL ., in this paper.
The ALBER T-based binary intent clas-
sifier surpasses the BILSTM-based classi-
fier by 0.10391in accuracy with more
parameters (+11.70M).
The multi-task

trained via learning to rank is designed

intent retriever
to select the persona intent from per-
sona descriptions U”. As mentioned in
Section III-D, the retriever generates a

multi-class label iﬂ to achieve this.
Thus, the accuracy of 0.5156 suggests
that the multi-task intent retriever per-
forms well in the multi-class classifica-
tion task.

D. Ablation Study

Table VI shows the ablation study
results of HIPPL. The last row shows
HIPPL performance in BLEU with
o, =05, 1,=0.05 1,=0.3
other default settings. Models M| ~ Mg
are the vaniants of HIPPL with diftferent
architectures. Oracle denotes the model
that uses RoBERTa-NLI generated

pseudo labels Y” for testing. It demon-

and

strates the upper limits of the model
capacity with the corresponding
architecture.

Comparing M; with HIPPL, we
found the global encoder improves the
performance by extracting the global

context from the dialogue history,
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providing a long-term memory. The
results of M, and M3 indicate the posi-
tive influence of III. The difference
between M, and HIPPL lies in their use

of attention on the predicted interlocu-
tor intent and persona complements
either separately or jointly. The results
show that HIPPL surpasses M, as it can
independently focus on the useful infor-
mation from the predicted interlocutor
intent and persona complements. The
result of HIPPL is better than that of
Ms;, since the attention mechanism on
persona complements in MSPG pro-
vides extra knowledge.

Given the absence of ground-truth
labels for intent inference training,
two methods were employed to miti-
gate the impact of incorrect pseudo
labels: 1) a soft gating mechanism on
persona complements in MSPG, and
2) random disguising. Comparing My
and HIPPL, we observed that random
disguising mitigates the errors from
pseudo labeling, vyielding a higher
BLEU in the generation task. The gap
between Mjs and HIPPL is smaller
than that between M, and HIPPL,

because Ms 1s an oracle model utiliz-
ing pseudo labels. Ms does not use
persona complements, consequently
exhibiting an excessive dependence
on the intent given by pseudo label-
ing. The superior performance of
HIPPL over Mjs suggests that persona
complements and random disguising
mitigate the impact of pseudo labeling
errors. There is a significant improve-
ment in BLEU for HIPPL, compared
with Mg, which can be attributed to
the use of random disguising for train-
ing the soft gating mechanism on per-

s01a Cﬂﬂlplf‘:ﬂlﬁntﬂ.

E. Parameter Analysis

Hyper-parameter analysis. Figure 4
shows the performance of HIPPL in
BLEU with different wvalues of «.
Here, 1, = 0.05, 1,, = 0.3, and others
were set as default. It 1s found that
when o, = 0, the model obtains the
lowest BLEU. This means the auxil-
lary task, 1.e., the training of IntentTT,
improves the performance of HIPPL.
As a, changes from 0 to 0.5, there is a
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FIGURE 6 Visualization of ).

general uptrend in BLEU. It reaches
the highest score when o, = 0.5. As
«, changes from 0.5 to 1.0, there is a
general downtrend in BLEU. Figure 5
illustrates the BLEU changes of
HIPPL with different values of 7, and
T,,, where others were set as default.
T, and T, control the probability of a
pseudo intent label Y being dis-
guised. It is found that the volatility of
7, = 0.05 and 1, =0.15 15 much
higher than that of 7, = 0.1 in BLEU.

Comparing the results across different
lines at each t,,, we observed that the
BLEU varies significantly when 7,
changes with 7,, = 0.15, 0.2, or 0.35.

This fluctuation shows a general
uptrend as T, increases. In addition,
the best performance is achieved at
7, = 0.15 and 7, = 0.35 .

A visualization. Given the absence
of ground-truth labels to train a robust
IntentDt for the III task and the differ-

ence between the pseudo labels and the

predicted intent labels by IntentDrt,
pseudo labeling and random disguising
were utilized to train a noise-resistant
MSPG with a trade-oftf in the accuracy
of fed pseudo labels. Specifically, A in
MSPG (see Eq. 23) was trained to miti-
gate the accuracy loss in IntentDt. The
motivation for introducing A is that A
can complement the response genera-
tion from multiple input sources, even
if the IntentDt delivered wrong actions
and intents.

Figure 6 illustrates the visualization
of computed weights A for different
source inputs in two different cases.
The detailed information of the two
cases can be viewed in Table VII. In
Exp. (a) of Table VII, the true intent U?
is related to playing video games while
IntentDt predicts a persona-irrelevant
intent. However, \° enables the model
to generate persona-consistent responses
by copying the relevant content from
persona complements U. In Exp. (b) of
Table VII, the true intent U? should be
irrelevant to given persona descriptions,
whereas IntentDt predicts an incorrect
persona intent (i like to sing folk songs).
Nevertheless, \° assists the model in
focusing on the local topic, 1.e., living
address, and ¢ allows the model to
select USA from the vocabulary. In
addition, A\’ enriches the response by
utilizing the wrong persona intent
(folk songs).

Visualization  of
indicates the
weights A work as a soft gating mech-

examples in
Figure 6 computed
anism, allowing the model to switch

among multiple source inputs. It
facilitates the model in attaining a
notwithstanding
the potential transmission of errors

IntentDt to MSPG. It also

improves the generalization capacity

judicious response,

from

and enriches the response contents.

F. Case Study

Some examples generated by S2SA, Per-
S2SA, TransferGPT2, GPT2-MAF, and
HIPPL are presented in Table VIII and
Table IX. In general, our model is more
capable of generating context-coherent
and persona-consistent responses, in

comparison to baseline models. In
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TABLE ViI Examples of generated responses from MSPG with multi-source inputs.

u'p) i love playing video games.
u'P) persona-irrelevant intent
u© hey there my name is Jordan and i am a veterinarian.
i am originally from california but i live in florida.
Exp. (3) i love playing video games.
love to read drama books.
uP. what do you like to do in your free time ?
Response i like to play video games.
up) persona-irrelevant intent
up) i like to sing folk songs.
U i adopted a stray cat recently.
Exp. (b) i like making my own clothing.
my mother was an army nurse.
U hi my name is lauren, and i live in new jersey. where do you live?
Response i live in the USA. i like to sing folk songs.

Note: Underlined contents are context-coherent. Italic ones use pre-defined personas.

TABLE Vill Generated dialogue responses by S2SA, Per-S2SA, TransferGPT2, GPT2-

MAF, and HIPPL (Case I).
ITEM TEXT C-CHR P-CNS
Persona i like to eat muffins.

i love film.

i work in the healthcare industry.

i have a dog named pedro.
Dialog history

b: better now that the bug is gone and my bacon is done cooking

agent: i do not like bugs either but bacon is good

b: what are you up to tonight ?
Human muffins are my favorite food. 2 1
S2SA | am going to be a doctor. 1 0
Per-S2SA | am going to go to the gym. i love it. 3 1
TransferGPT2 i am watching a movie. 3 1
GPT2-MAF | am working in the healthcare industry right now. 2 1
HIPPL i am going to eat muffins. 3 1

Table VIII, S2SA yields the lowest scores
in c-chr and p-cns. Per-S2SA generates a
response that is contextual-coherent.
Although it 1s irrelevant to the pre-
defined personas, they are not contradic-
tory. The response from GPT2-MAF
1s persona-consistent. However, 1t 1s
not coherent with the local topic. In
Table IX, i am sorry to hear that. from
Per-S2SA is not appropriate for the local

Note: Underlined contents are contextually coherent and italic ones use pre-defined personas.

topic and what do you do for a living? 1is
consistent but irrelevant to the pre-
defined personas. Responses from S2SA,
TransterGPT2, and GPT2-MAF all
contradict the pre-defined persona in
Table IX. Moreover, the response from
TransterGPT2 contradicts itself, achiev-
ing the lowest c-chr.

our HIPPL model

yields context-coherent and persona-

In contrast,
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consistent responses in the two dia-
logues. For example, given a question
what are you up to tonight? from Speaker
b in Table VIII, the HIPPL replies i am
going to eat muffins, where i like to eat muf-
fins 1s one of the given personas. Given i
am doing alright but i really wish i had kids
from the agent in Table IX, and i do not
have kids either, i have a diet company from
Speaker b, the HIPPL responses i want
to be a fashion designer. This is very similar
to the human response, i.e., oh okay cool
i want to be a fashion designer. Moreover,
HIPPL possesses the capacity to selec-
tively determine a suitable persona ele-
ment, e.g., i want to be a fashion designer
from the persona description set, which
is in accordance with the context of a

career topic.

VI. Discussion
According to the
IntentDt trained via pseudo labeling

experiments,

and random disguising contributed to
the good performance of generated
responses in terms of BLEU. How-
still room for the

ever, there 1s

improvement of predicted intents.
First, IntentDt is a two-stage module
consisting of a binary intent classifier
and a multi-task retriever. Thus, an
end-to-end intent detector module
could be proposed to reduce the
accumulated biases in two-stage set-
tings. Second, the IntentDt predicted
based on the

concatenated dialogue history without

interlocutor intents
an in-depth analysis of the interac-
tions between utterances. However,
even the utterances at the very begin-
ning of the conversation may also
influence the topic or speaker’s
intent. Hence, a dependency-aware
context representing module [67]
would benefit intention detection.
Furthermore, RoBER Ta-NLI might
not be an ideal solution to pseudo
labeling since its design was primarily
NLI.
Thus, alternatives could be employing

an NLI model that 1s specifically

tailored for document-level

trained on persona-based chitchat data
or Integrating external knowledge
graphs to improve the precision of

pseudo labels.



ViI. Conclusion

Persona consistency and contextual
coherence are two key challenges in
persona-driven dialogue generation
tasks. To this end, a lightweight hier-
archical intent-inferring pointer net-
work 1s put forth for multi-source
multi-turn consistent persona-driven
dialogue generation. The parameter
size of our model is only approxi-
mately 20% of that of the state-of-
the-art GPT-2-based model. Notably,
our model demonstrated superior per-
formance in diverse evaluation met-

rics. To assist the persona-driven
dialogue agent, the model also
involves training a classifier with

pseudo labels for interlocutor intent
inference.

Experimental results indicate that
the hierarchical interlocutor encoder
extracting global context improves
model performance in BLEU. The
interlocutor intent inference improves
the quality of generated responses from
the dialogue agent. The random dis-
guising mechanism makes the model
more resistant to noise. And the multi-
source pointer-generator enhances the
generalization capacity of the model by
employing a soft gating mechanism and
a multi-source attention among differ-
ent source inputs.

TABLE IX Generated dialogue responses by S2SA, Per-S2SA, TransferGPT2, GPT2-
MAF, and HIPPL (Case II).
ITEM TEXT C-CHR P-CNS

i want to be a fashion designer.

I was arrested for stealing.
Persona i want children badly but not right time in my life.

my parents were always gone when i was growing up.

b: hello, how are you ? my cats and dogs are fine.
Dialog history ~ agent:iam doing alright but i really wish i had kids...

b: i do not have kids either, i have a diet company.
Human oh okay cool i want to be a fashion designer. 3 1
S2SA that is cool. i am a teacher. 3 0
Per-S2SA i am sorry to hear that. what do you do for a living ? 1 1
TransferGPT2  iam a fashion designer. i want to be a fashion designer. 1 0
GPT2-MAF that is cool. i am a fashion designer. 3 0
HIPPL i want to be a fashion designer. 3 1
Note: Underlined contents are contextually coherent and italic ones use pre-defined personas.
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