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Abstract

Cross-lingual named entity recognition (NER)
suffers from data scarcity in the target lan-
guages, especially under zero-shot settings. Ex-
isting translate-train or knowledge distillation
methods attempt to bridge the language gap,
but often introduce a high level of noise. To
solve this problem, consistency training meth-
ods regularize the model to be robust towards
perturbations on data or hidden states. How-
ever, such methods are likely to violate the
consistency hypothesis, or mainly focus on
coarse-grain consistency. We propose ConNER
as a novel consistency training framework for
cross-lingual NER, which comprises of: (1)
translation-based consistency training on un-
labeled target-language data, and (2) dropout-
based consistency training on labeled source-
language data. ConNER effectively leverages
unlabeled target-language data and alleviates
overfitting on the source language to enhance
the cross-lingual adaptability. Experimental re-
sults show our ConNER achieves consistent
improvement over various baseline methods.1

1 Introduction

With the emergence of large scale multilingual
pretrained language models (Devlin et al., 2019;
Conneau et al., 2020), cross-lingual named entity
recognition (NER) performance has seen substan-
tial improvement, especially under zero-shot set-
ting where no labeled target-language training data
is available (Tsai et al., 2016; Xie et al., 2018; Jain
et al., 2019). Nevertheless, due to linguistic gaps
between languages, NER models trained solely on
the source-language data are likely to overfit the
source language’s characteristics, and still suffer
from sub-optimal performance when tested on tar-
get languages directly.
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To further enhance cross-lingual adaptability,
various methods have been proposed to explic-
itly incorporate target-language information dur-
ing training. These approaches can be roughly
categorized into: (1) translate-train and (2) knowl-
edge distillation. Translate-train produces paral-
lel target-language training data by translating the
source-language training data and mapping the la-
bels (Xie et al., 2018; Bari et al., 2020; Li et al.,
2020). However, the translated sentences are less
natural and the label mapping is also error-prone.
Moreover, without utilizing the abundant unlabeled
target-language data, their performance is usually
sub-optimal (Wu et al., 2020b). On the other hand,
knowledge distillation trains the student model on
target-language data with soft labels from a teacher
model (Wu et al., 2020a,b; Chen et al., 2021; Liang
et al., 2021; Zhong et al., 2022). Given the rela-
tively low performance of the teacher model on
target languages, the soft labels are noisy and limit
the efficacy of unlabeled target-language data when
using these labels as supervision signals.

In this paper, we primarily explore how to better
utilize unlabeled target-language data. Instead
of adopting knowledge distillation, which is
vulnerable to the noise in soft labels, we adopt
consistency training as a more fault-tolerant
strategy. In general, consistency training works by
enhancing the smoothness of output distributions
and improving the model’s robustness and general-
ization (Miyato et al., 2018). Its training process is
less sensitive towards noisy labels by regulating
multiple predictions on different views of the same
data point. Several works already attempted to
apply consistency training on NER, including
token-level and sequence-level consistency meth-
ods. Token-level consistency works on the same
granularity as NER by regularizing the model to
be invariant towards Gaussian noise (Zheng et al.,
2021) or word replacement (Lowell et al., 2020).
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However, such naïve noise or augmentation
might violate the assumption that noised tokens
share the same labels as the original ones. On
the other hand, a sequence-level consistency
method (Wang and Henao, 2021) attempted to
adapt back-translation-based (Edunov et al., 2018)
consistency to NER. Due to difficulties in word
alignment, they only use a coarse-grain consistency
on the appearance of a certain type of entity in the
original and back-translated sentences, which is
plausibly a sub-optimal design for token-level tasks
like NER. To this end, other works used constituent-
based tagging schemes (Zhong et al., 2020).

We propose ConNER, a cross-lingual NER
framework that primarily leverages consistency
training on unlabeled target-language data using
translation. Concretely, ConNER encourages the
model to output consistent predictions between a
span of tokens in the original sentence and their
projection in the translated sentence. We tackle the
problem of word alignment with alignment-free
translation, and propose span-level consistency con-
straints to overcome the problem of token number
changes during translation. Another advantage of
translating unlabeled target-language data into the
source language is that we can obtain more reli-
able training signals from the predictions on these
translated sentences, because the model is trained
with supervision from labeled source-language data
and has better performance on the source language.
Such reliable signals can be propagated back to the
unlabeled target-language sentences through regu-
larizing the prediction consistency between aligned
spans. Furthermore, consistency training on the
parallel unlabeled data helps to align different lan-
guages in the same representation space for better
cross-lingual adaptability.

To mitigate overfitting on the source language,
we also introduce a dropout-based consistency
training on labeled source-language data, where
we train our model to be robust towards noise in-
duced by different dropout processes. In summary,
ConNER enhances the model’s robustness towards
both translation-based and dropout-based pertur-
bations, which alleviates overfitting and achieves
better cross-lingual generalization. To illustrate the
effectiveness of ConNER, we conduct experiments
on three transfer pairs and benchmark against vari-
ous baseline methods. Experimental results show
that ConNER achieves substantial improvement on
cross-lingual NER over the baselines.

Our major contributions are as follows: (1) We
propose a novel consistency training framework for
cross-lingual NER and achieve consistent improve-
ment over multiple baselines across various trans-
fer pairs. (2) We present translation-based consis-
tency training to effectively utilize unlabeled target-
language data. It obviates using word-alignment
tools and handles token number changes. (3) We in-
troduce dropout-based consistency training to NER
and reinforce the model’s robustness towards input
noise and alleviate overfitting on labeled source-
language data.

2 Methodology

In this section, we introduce ConNER, our consis-
tency training framework for cross-lingual NER.
As shown in Fig. 1, the overall framework con-
sists of three components, namely (1) training
with supervised cross-entropy loss, (2) dropout-
based consistency training and (3) translation-
based consistency training. Specifically, supervised
cross-entropy loss is calculated on labeled source-
language data, similar to a vanilla NER model. Sec-
ondly, dropout-out based consistency training (Sec-
tion 2.4) feeds the same labeled source-language
sample twice through the model, and enforces the
model to output consistent probability distributions
on the same token from two different dropout opera-
tions. Lastly, translation-based consistency training
(Section 2.3) translates unlabeled target-language
data into the source language via alignment-free
translation method, and encourages the model to
make consistent predictions on conjugate spans be-
tween the original and translated sentences.

2.1 Problem Definition

Following previous works, we formulate the task of
cross-lingual NER as a sequence tagging problem.
Given an input sentence comprising of n tokens
X = {x1, x2, ..., xn}, we aim to assign an NER tag
yi ∈ Y to each token xi ∈ X, where Y denotes the
set of all possible NER tags. When there are a total
number of N entity types C = {C1, C2, ..., CN}
with BIOES scheme P = { B-, I-, E-, S-}, the
token-level label space is Y = P × C ∪ {O}. In
our framework, apart from labeled source-language
training data Dsrc

l , unlabeled target-language data
Dtgt

u is also available during training.
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Final Loss

Supervised CE Loss 

 

  Labeled source data
   X: She works  for  Apple 
   Y:  O       O      O  S-ORG

NER Model 
(1st dropout)

Unlabeled target data
Sie wurde in Westdeutschland geboren

Translated source data 
She was born in West German

Alignment-free Translation

Translation-based Consistency Loss 

NER Model 
(2nd dropout)

Dropout-based Consistency Loss 

 

NER Model NER Model

Tok-level Probs 
Pt(Westdeutschland)

Tok-level Probs 
Pt(West), Pt(German)

Span-level Probs 
Ps(Westdeutschland) = Pt(Westdeutschland) 

Span-level Probs 
Ps(West German) = Pt(West) × Pt(German)

Figure 1: ConNER: consistency training for cross-lingual NER.

2.2 Consistency Training for NER

Consistency training (Miyato et al., 2018; Clark
et al., 2018; Xie et al., 2020) aims to enhance the
model’s robustness by regularizing model predic-
tions to be invariant to label-preserving perturba-
tions. Despite its success on CV and sentence-level
NLP tasks (Miyato et al., 2018; Xie et al., 2020),
consistency training for NER remains largely un-
derexplored, where the model should be consistent
on token-level or entity-level predictions.

In this work, we explore better consistency train-
ing methods for cross-lingual NER, which can be
formulated as follows. Let ϕ be a transformation
function for generating small perturbation, such
as text translation or hidden state noising. Given
an input sequence of tokens (i.e., a sentence X)
or hidden states, and a segment s in the sequence
(e.g., a span of tokens), we apply ϕ on the input
to obtain a transformed sequence which contains
the transformation of s, denoted as s′. For exam-
ple, we translate X to another language and s′ is
the translation of s in the translated sentence. We
refer to (s, s′) as a pair of conjugate segments. We
encourage the model to output consistent proba-
bility distributions on s and s′, by minimizing the
consistency loss as:

Lc =
1

m

∑

s∈X,
s′∈ϕ(X)

Ddiv(P (y | s) || P (y | s′)) (1)

where Ddiv is a measure of divergence, m is the
total number of conjugate segment pairs.

In this work, we introduce two variants of consis-
tency training for NER which vary in the form of
perturbation ϕ: (1) translation-based perturbation
on input text, and (2) dropout-based perturbation
on token representations.

Depending on the form of perturbation, s can
be a single token or a span of tokens, and corre-
spondingly P (y|s) will be token-level or span-level
probability. We explain in details in the following
Sec. 2.3 and 2.4.

2.3 Translation-based Consistency Training

In this section, we present translation-based consis-
tency training as the first variant, where we intro-
duce a textual-level perturbation ϕ by translating
the original sentence into a different language. The
conjugate segments (s, s′) are now a span of tokens
in the original sentence and its translation in the
translated sentence, respectively. By enforcing the
model to output consistent predictions on s and s′,
the model tends to capture language-invariant fea-
tures and thus has better cross-lingual adaptability.

To enable the above translation-based consis-
tency training for NER, there are still two challeng-
ing issues to be resolved: (1) the word alignments
between the original and translated sentences are
not available and the existing alignment tools for
inducing word alignments are often error-prone; (2)
the perturbed sentence (i.e., the translation) may
have different length and word order, and it is likely
that the token-level one-to-one correspondence for
calculating consistency loss will not be applica-
ble. To tackle these challenges, we propose a novel
method which leverages alignment-free translation
to automatically construct span-level correspon-
dence, and caters for token number changes as
well. Note that our approach is not sensitive to
the change of sequence length after perturbation
because it no longer requires the consistency on
token-level predictions.
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Input sentence with candidate span marked in blue:
Bruce Willis wurde in Westdeutschland geboren.

1. Replace span with placeholder and translate:
Bruce Willis wurde in SPAN44 geboren.

⇒ Bruce Willis was born in SPAN44.

2. Obtain translation of span:
Westdeutschland ⇒ West German

3. Replace placeholder with translated span
and extract conjugate pair:
Bruce Willis was born in West German.
Conjugate pair: (Westdeutschland, West German)

4. Converting token-level probs to span-level probs:
Ps(PER|West German) = Pt(B-PER|West) · Pt(E-PER|German)

Ps(LOC|West German) = Pt(B-LOC|West) · Pt(E-LOC|German)

Ps(ORG|West German) = Pt(B-ORG|West) · Pt(E-ORG|German)

Ps(MISC|West German) = Pt(B-MISC|West) · Pt(E-MISC|German)

Ps(O|West German) = Pt(O|West) · Pt(O|German)

Ps(illegal|West German) = 1− Ps(PER)− Ps(LOC)

− Ps(ORG)− Ps(MISC)− Ps(O)

Figure 2: Example illustrating the key steps of
translation-based consistency training.

Alignment-free Translation
Given an input sentence X = {x1, ..., xn} which
contains a candidate span sij = {xi, ..., xj}, we
aim to translate it into a different language as
X′ = {x′1, ..., x′n′} and locate the span s′kl =
{x′k, ..., x′l} that corresponds to sij . Adapting the
method proposed in Liu et al. (2021), we con-
duct alignment-free translation to automatically
locate s′kl in the translated sentence. Specifically,
as shown in Fig. 2, we first replace the candidate
span sij with a placeholder token SPANij to obtain
X̂ = {x1, ..., xi−1,SPANij, xj+1, ..., xn}. Then,
we feed X̂ through a translation engine to obtain its
translation X̂′. We notice the placeholder SPANij
remains mostly unchanged in the translated sen-
tence, and it indicates where the candidate span
should appear in the translation. Next, we aim to
revert the placeholder back to real text, by replac-
ing it with the translation of sij , denoted as s′kl.
Lastly, we substitute the placeholder in X̂′ with s′kl,
to obtain the final translation X′, and (sij , s

′
kl) is

recorded as a pair of conjugate segments.

Token-level to Span-level Probability
As mentioned above, sij and s′kl might have dif-
ferent number of tokens, and thus it is intractable
to calculate one-to-one consistency loss between

Algorithm 1 Token to span probability conversion
Given candidate span sij = {xi, ...xj} and token-level
probabilities {Pt(yu|xu) | u ∈ [i, j]}
Ps(O|sij)← 1, Ps(illegal|sij)← 1
for CLS ∈ C do

if i = j then
Ps(CLS|sij)← Pt(S-CLS|xi)

else if j − i = 1 then
Ps(CLS|sij)← Pt(B-CLS|xi)× Pt(E-CLS|xi)

else
Ps(CLS|sij)← Pt(B-CLS|xi)
for u ∈ (i, j) do

Ps(CLS|sij)← Ps(CLS|sij)×Pt(I-CLS|xu)
end for
Ps(CLS|sij)← Ps(CLS|sij)× Pt(E-CLS|xj)

end if
Ps(illegal|sij)← Ps(illegal|sij)− Ps(CLS|sij)

end for
for u ∈ [i, j] do

Ps(O|sij)← Ps(O|sij)× Pt(O|xu)
end for
Ps(illegal|sij)← Ps(illegal|sij)− Ps(O|sij)
Ps(zij |sij) = {Ps(CLS1|sij), ..., Ps(CLSN|sij),

Ps(O|sij), Ps(illegal|sij)}
return Ps(zij |sij)

pairs of single tokens. We resolve this issue by con-
verting token-level probability distributions (over
label space Y defined in Sec. 2.1) to span-level
probability distributions over the set of possible
entity types, i.e., C ∪ {O}. Specifically, given the
last hidden state hi of token xi, the NER model
feeds it through a linear layer to obtain token-level
probability distribution Pt(yi|xi, hi). As shown
in Algorithm 1, to obtain span-level probability
distribution Ps(zij |sij), we multiply probabilities
of token-level labels which form a legal label se-
quence under BIOES scheme. Step 4 in Fig. 2 also
gives an example calculation as illustration.

Note that we introduce an extra span-level class
illegal to include all label sequences of sij that
violate the BIOES rules (e.g., {S-PER, I-PER}),
such that all entries of Ps(zij |sij) add up to one
to form a valid probability distribution. In other
words, the label space of span-level label zij is C ∪
{O, illegal}. We apply the same transformation
on s′kl to obtain its span-level distribution Ps(s

′
kl)

Finally, we calculate Ddiv between span-level
probabilities of each conjugate segment pair
(sij , s

′
kl) using bidirectional Kullback-Leibler (KL)

divergence, and Eqn. 1 becomes:

Ltrans =
1

m

∑

sij∈X

s′kl∈X′

1

2
[ KL(Ps(zij |sij) || Ps(zkl|s′kl))

+ KL(Ps(zkl|s′kl) || Ps(zij |sij))]

(2)
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In our experiments, we apply translation-based
consistency training on unlabeled target-language
sentences by translating them into the source
language. It is noteworthy that, although our
translation-based consistency training is applicable
to arbitrary span pairs from the parallel sentences,
it would be more valuable for NER task if the se-
lected spans are likely to be entities. Therefore,
we use a weak NER tagger trained with only la-
beled source-language data to assign NER labels
on unlabeled target-language sentences, and use
the predicted entities as our candidate spans for
consistency training. Note that we only use predic-
tions from the weak tagger to locate the boundary
of candidate spans, which to some extent reduces
the impact of predictions with wrong entity types.

2.4 Dropout-based Consistency Training
We introduce another variant of consistency train-
ing that is based on dropout (Srivastava et al., 2014).
Inspired by Wu et al. (2021); Gao et al. (2021), we
consider dropout as a form of perturbation ϕ at
representational level. By regularizing the model
to be invariant to different random dropouts, we
encourage the model to make predictions based
on more diverse features rather than overfitting on
certain spurious features. As word order does not
change after applying dropout, the conjugate seg-
ments now become the representations of the same
token undergoing different dropout processes.

Concretely, we pass the same sentence X
through the encoder twice. As a result of differ-
ent stochastic dropout in each pass, we obtain two
different sets of token representations for X. Subse-
quently, the model outputs two different token-level
probability distributions P1(yi|xi) and P2(yi|xi)
over the label space Y . We also adopt bidirectional
KL divergence as Ddiv, and calculate dropout-
based consistency loss as:

Ldrop =
1

n

∑

xi∈X

1

2
[ KL(P1(yi|xi) || P2(yi|xi)

+ KL(P2(yi|xi) || P1(yi|xi))]

(3)

We apply dropout-based consistency training on
labeled source-language data in our experiments,
but NER labels are not used.

2.5 Training Objective
As mentioned above, we apply translation-based
consistency training on unlabeled target-language
data, and dropout-based consistency training on
labeled source-language data.

These consistency losses are combined with the
supervised cross-entropy loss (i.e., LCE) on labeled
source-language data, which gives the total training
objective as:

Ltotal =
∑

X∈Dsrc
l

(LCE + α Ldrop) +
∑

X∈Dtgt
u

β Ltrans (4)

where α and β are weight coefficients.

3 Experiments

In this section, we evaluate our consistency training
framework ConNER on cross-lingual NER, and
compare with various state-of-the-art models.

3.1 Dataset

We conduct experiments on CoNLL02 and
CoNLL03 datasets (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003), which involve
four languages: English (En), German (De), Span-
ish (Es) and Dutch (Nl). To evaluate on more dis-
tant transfer pairs, we also experiment on WikiAnn
dataset (Pan et al., 2017) of English (En), Chinese
(Zh), Arabic (Ar) and Hindi (Hi). We adopt the
BIOES entity annotation scheme in our experi-
ments. Following previous zero-shot cross-lingual
NER works, we use the original English training
set as our training data Dsrc

l , while treating all other
languages as target languages and evaluate on their
test sets. We also use the original English devel-
opment set for early-stopping and model selection.
The NER labels from target language training sets
are removed, and they are used as our unlabeled
target-language data Dtgt

u .

3.2 Implementation Details

We implement our vanilla NER model using XLM-
RoBERTa-large (Conneau et al., 2020) with CRF
head (Lample et al., 2016). The emission probabili-
ties of the CRF layer, which are obtained by feeding
the last hidden states of XLM-R through a feed-
forward layer, are used as the token-level probabili-
ties for calculating consistency losses in Section 2.3
and 2.4. We use AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate lr = 2e−5 and
set batch sizes for both labeled and unlabeled data
as 16. We train the NER model for 10 epochs and
select the best checkpoint using English dev set.
The model is evaluated on target-language test sets
and we report the averaged micro-F1 score over 3
runs. We use Google Translate as our translation
engine for the main experiments.
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Figure 3: Averaged dev F1 for hyperparameter tuning.

We conduct a grid search on both hy-
perparameters α and β over the range of
{0.25, 0.5, 1.0, 2.0, 4.0}. The English dev set F1
averaged across three transfer pairs are shown in
Fig. 3. We set α = 0.5, β = 0.5 based on the best
dev set performance.

3.3 Main Results

As shown in Table 1, ConNER achieves significant
performance improvement (avg. 2.61) over the
zero-shot vanilla baseline trained with only labeled
source-language data. This demonstrates the effec-
tiveness of our method, achieved by enhancing the
model’s robustness towards perturbations on both
labeled and unlabeled data.

There is a considerable performance gap be-
tween ConNER and the translate-train methods
(i.e., the upper section of Table 1). As translate-
train suffers from unnatural translation and inac-
curate label mapping, their performance is sub-
optimal under full dataset settings where the vanilla
baselines already present decent zero-shot perfor-
mance. This also shows the importance of ex-
ploiting unlabeled target-language data, apart from
leveraging the available source training data and
its parallel translation. Our ConNER also out-
performs various state-of-the-art knowledge dis-
tillation methods (i.e., the middle section of Ta-
ble 1). Soft-labels in knowledge distillation are
often noisy, and such noise is likely to be amplified
by forcing the student model’s predictions to match
the soft-labels. In comparison, our training method
is more fault-tolerant, and induces better alignment
between languages by training on parallel unla-
beled data. Furthermore, we compare ConNER
with two consistency training baselines, which use
word replacement (Lowell et al., 2020) or Gaussian
noise (Zheng et al., 2021) as perturbations (i.e., the
lower section of Table 1).

As we can see, word replacement might change
the NER label of the original word and violate
the consistency hypothesis, and thus lead to per-
formance drops on some languages. On the other
hand, Gaussian noise only applies perturbations
with small magnitudes, and brings in limited im-
provement. In contrast, our ConNER leverages
translation and dropout as high-quality perturba-
tions. As a result, ConNER shows significant im-
provements over the consistency training baselines.
Note that although TOF (Zhang et al., 2021b) uses
extra labeled MRC data during training, our Con-
NER still surpasses it on all of the target languages.

In general, our translation-based consistency
training effectively utilizes unlabeled target data
and encourages the model to extract language-
invariant features, while our dropout-based con-
sistency further alleviates overfitting on source-
language data for better cross-lingual adaptability.

3.4 Low-resource NER
We also investigate the effectiveness of ConNER
on low-resource cross-lingual NER, where source-
language training data is also limited. Specifically,
we randomly sample 5%, 10% and 25% examples
from the original English training set as our low-
resource training sets. We apply ConNER and eval-
uate on the original target-language test sets. As
shown in Table 2, ConNER is also effective un-
der low-resource settings, achieving average per-
formance improvements of 4.32, 2.20, and 1.77
F1 score compared with vanilla baseline respec-
tively. We observe larger gains as the low-resource
training set becomes smaller, which demonstrates
the importance of leveraging unlabeled data and
preventing overfitting under low-resource settings.
Another interesting finding is that, using only 25%
of the original training data, our ConNER is already
comparable to a vanilla NER model trained on the
full training set.

3.5 Distant Languages
To evaluate the robustness of ConNER on a wider
range of languages, we conduct experiments on
three non-western target languages: Chinese (Zh),
Arabic (Ar) and Hindi (Hi), from the WikiAnn
dataset (Pan et al., 2017).

As shown in Table 3, we observe the vanilla base-
line has relatively low performance on these non-
western languages, due to larger linguistic gaps.
This might also introduce some noise in the choice
of candidate spans for our method.
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Method De Es Nl Avg
vanilla baseline 72.10 79.64 81.29 77.68

Translate-train
BWET (Xie et al., 2018)† 73.84 79.03 80.93 77.93
MTL-WS (Li et al., 2020) 74.92 76.73 78.62 76.76
MulDA (Liu et al., 2021)‡ 74.55 78.14 80.22 77.64

Knowledge-distillation
TSL (Wu et al., 2020a) 73.16 76.75 80.44 76.78
Unitrans (Wu et al., 2020b) 74.82 79.31 82.90 79.01
AdvPicker (Chen et al., 2021) 75.01 79.00 82.90 78.97

Consistency training
MLM-replace (Lowell et al., 2020)‡ 71.65 79.70 80.83 77.39
xTune (Zheng et al., 2021)‡ 74.78 80.03 81.76 78.85
ConNER (Ours) 77.14 80.50 83.23 80.29

Multi-task
TOF (Zhang et al., 2021b)* 76.57 80.35 82.79 79.90

Table 1: Experimental results of cross-lingual NER methods. † denotes reproduced results with XLM-R-large,
which are higher than the original paper based on LSTM. ‡ denotes reimplementation on our datasets. Results
without markers are cited from the original papers. *Zhang et al. (2021b) use extra labeled MRC data for multi-task
training, thus it is not directly comparable with our method.

#Train Method De Es Nl Avg

5%
vanilla 64.91 65.76 71.22 67.30
ConNER 69.94 70.15 74.76 71.62

10%
vanilla 67.58 69.92 77.70 71.73
ConNER 70.88 71.23 79.70 73.94

25%
vanilla 70.72 77.39 79.24 75.78
ConNER 73.47 77.92 80.66 77.35

Table 2: Low-resource NER results.

Method Zh Ar Hi
vanilla 33.10 53.00 73.00
Wu and Dredze (2020) 43.90 45.50 66.60
Wu et al. (2020a) 31.14 50.91 72.48
ConNER (Ours) 39.17 59.62 74.49

Table 3: Results on distant transfer pairs.

Nonetheless, ConNER is still effective and
demonstrates substantial improvements over the
baseline. Such results verify that ConNER is gen-
eral and robust for not only transfer pairs of the
same language but also distant transfer pairs.

4 Analysis

4.1 Ablation Study

To analyze the contribution of each component
and justify the framework design of ConNER, we
conduct the following ablation studies: (1) trans-

Method De Es Nl Avg
vanilla 72.10 79.64 81.29 77.68
ConNER 77.14 80.50 83.23 80.29
trans-unlabel 76.87 80.76 81.66 79.77
dropout-label 74.46 80.90 81.63 78.99
trans-label 71.16 79.51 81.03 77.23
dropout-unlabel 61.72 77.80 80.80 73.44

Table 4: Ablation study.

unlabel, where we only keep the translation-based
consistency on unlabeled target data; (2) dropout-
label, where we only keep the dropout-based con-
sistency on labeled source data; (3) trans-label,
where we translate labeled source language data to
the target language, and calculate consistency loss
between entities and their translations in the trans-
lated sentences. (4) dropout-unlabel, where we
feed the same unlabeled target data twice through
the encoder, and calculate consistency loss between
the two output distributions of the same token.

As shown in Table 4, both trans-unlabel and
dropout-label achieve improved performance com-
pared to the vanilla baseline. Nevertheless, the aver-
age improvement from trans-unlabel is more signif-
icant, demonstrating the importance of leveraging
unlabeled target-language data for cross-lingual
tasks. Combining trans-unlabel and dropout-label,
our ConNER achieves further performance gains.
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Method De Es Nl Avg
KL-unlabel 76.08 80.55 80.06 78.90
KL-trans 76.65 80.31 81.22 79.39
bi-KL 76.87 80.76 81.66 79.77

Table 5: Choice of divergence measure.

However, when applying translation-based con-
sistency to labeled data (trans-label) instead, we
observe some performance drop. This is possibly
because label information is already present, such
that model trained on labeled source data already
learns to make accurate predictions on its parallel
translated sentence, and translation-based consis-
tency becomes redundant.

Moreover, if we apply the dropout-based consis-
tency on unlabeled target-language data (dropout-
unlabel), we observe an unreasonably low perfor-
mance (e.g., German). We attribute this to catas-
trophic forgetting of multilinguality. Without the
guidance from the labels on target-language data,
the model is likely to enter a failure mode that triv-
ially minimizes the divergence for target-language
tokens. As a result, target-language features are
diverted away from the source-language in the rep-
resentation space, causing the model to fail on the
target language. In contrast, the translation-based
consistency of ConNER makes use of parallel unla-
beled data such that the source and target language
are always aligned through the conjugate spans.

4.2 Choice of Divergence Measure
In this section, we investigate the effect of differ-
ent divergence measures on the translation-based
consistency. We consider three configurations: (1)
KL-unlabel, where the predictions on the unlabeled
target data are taken as ground-truth probabilities
(Eqn. 5a); (2) KL-trans, where the predictions on
the translated source data as ground-truth probabil-
ities (Eqn. 5b); (3) bi-KL, which adopts a bidirec-
tional KL divergence (Eqn. 5c).

DKL-unlabel = KL(Ps(zij |sij) || Ps(zkl|s′kl)) (5a)

DKL-trans = KL(Ps(zkl|s′kl) || Ps(zij |sij)) (5b)

Dbi-KL =
1

2
[ KL(Ps(zij |sij) || Ps(zkl|s′kl))

+ KL(Ps(zkl|s′kl) || Ps(zij |sij))]
(5c)

From the experimental results in Table 5, we ob-
serve the overall performance of KL-trans is higher
than KL-unlabel. This is probably due to the higher
performance of the model on English data.

By aligning predictions on unlabeled target-
language data to the predictions on translated data
in English, we propagate more accurate training
signals from English to the target language and
achieve better cross-lingual adaptation. Meanwhile,
KL-unlabel also helps to reduce overfitting to En-
glish by taking target-language data as a refer-
ence. Bi-KL takes advantage of both KL-trans
and KL-unlabel and achieves the best averaged per-
formance.

4.3 Case Study
We conduct a case study to qualitatively show
how translation-based consistency training bene-
fits cross-lingual NER. As depicted in Fig. 4, the
vanilla model predicts German word "Augustäpfel"
as an organization, but gives an inconsistent pre-
diction for its English translation "August apples"
(i.e., O). In contrast, our model, which is enhanced
by translation-based consistency training, attempts
to behave similarly on the aligned spans and there-
fore is capable to calibrate the prediction on "Au-
gustäpfel". Similarly, while the vanilla model pre-
dicts German "Wicker" as a location, our method
leverages the context information to make the cor-
rect prediction as an organization.

4.4 Robustness to Translation Systems
In above experiments, we used Google Translate
as our translation engine. To demonstrate the ro-
bustness of ConNER towards different machine
translation systems, we rerun the experiments us-
ing Opus-MT (Tiedemann and Thottingal, 2020),
a popular open-source machine translation system.
As shown in Table 6, there exists a minor perfor-
mance drop when changing Google Translate to
Opus-MT, possibly due to its lower translation qual-
ity. Nevertheless, it is observed that ConNER with
Opus-MT is still superior to all baseline methods.

Method De Es Nl Avg
Google Translate 77.14 80.50 83.23 80.29
Opus-MT 75.86 80.60 82.47 79.64

Table 6: Results using Google Translate and Opus-MT.

5 Related Work

NER is the task to locate and classify named en-
tities into pre-defined categories (Xu et al., 2021;
Zhou et al., 2022b; Xu et al., 2022). Similar to other
tasks under cross-lingual settings (Zhang et al.,

8445



Original: Mittags zumindest hatte der UVF noch reichlich viele Augustäpfel auf dem Tisch

Translated: At least at midday, the UVF still had plenty of August apples on the table

PER LOC ORG MISC O PER LOC ORG MISC O

Vanilla NER

PER LOC ORG MISC O PER LOC ORG MISC O

✓

ConNERConNER Vanilla NER

Original: Gegen seine Ex-Kameraden aus Wicker traf er dreimal

Translated: He scored three times against his ex-comrades from Wicker

PER LOC ORG MISC O PER LOC ORG MISC O

Vanilla NER

PER LOC ORG MISC O PER LOC ORG MISC O

ConNERConNER Vanilla NER

✗

✗

✓

✓

✓

✓ ✓

Figure 4: Case study on translation-based consistency.

2021a; Liu et al., 2022a,b; Zhou et al., 2022a),
cross-lingual NER suffers from linguistic gaps. Re-
cent works on cross-lingual NER can be roughly
categorized into three categories: (1) translate-train
(2) knowledge distillation (3) consistency training.

Translate-train creates target-language pseudo-
labeled data by translating the source-language
training set and projecting the NER labels of
source-language texts to the translated texts. Xie
et al. (2018) use bilingual embeddings to trans-
late training data word-by-word and leverage self-
attention for word order robustness. Bari et al.
(2020) propose unsupervised translation using
word-level adversarial learning and augmented fine-
tuning with parameter sharing and feature augmen-
tation. Li et al. (2020) propose a warm-up mech-
anism to distill multilingual task-specific knowl-
edge from the translated data in each language.
Translate-train focuses on translating the available
labeled source-language data, but it ignores the
abundant unlabeled target-language data.

Knowledge distillation trains the student model
using the soft-labels obtained from a teacher
model. Wu et al. (2020a) apply knowledge distilla-
tion and propose a similarity measuring method to
better weight the supervision from different teacher
models. Wu et al. (2020b) leverage both soft-labels
and hard-labels from teacher models trained on the
source data and translated training data. Chen et al.
(2021) use a discriminator to select less language-
dependent target-language data via similarity to

the source language. Zhang et al. (2021b) use ex-
tra machine reading comprehension data to enable
multi-task adaptation and achieve improved NER
performance. In general, knowledge distillation is
sensitive to the noise in pseudo-label, especially
when transferring to the target language.

Consistency training applies perturbation on
data or hidden states and regularizes the model
to output consistent predictions. Existing works
apply word replacement (Lowell et al., 2020) or
Gaussian noise (Zheng et al., 2021) as perturba-
tions. However, the validity and diversity of these
noise or augmentations largely limit their perfor-
mance (Xie et al., 2020). Wang and Henao (2021)
use back-translation as a high-quality augmenta-
tion. However, due to word alignment issues, they
focus on the entity-appearance consistency in the
whole sentence, but ignore the location of entities.

6 Conclusions

In this work, we proposed a novel consistency
framework for cross-lingual NER. Our method
ConNER enhances the model’s robustness towards
perturbations on labeled and unlabeled data, via
translation-based and dropout-based consistency.
With translation-based consistency, we tackle the
challenges of word alignment and token number
changes via alignment-free projection and token-
level to span-level conversion. Compared with mul-
tiple baseline methods, ConNER achieves consis-
tent performance improvements.
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7 Limitations

The method proposed requires the use of machine
translation models or systems, which in some
cases might not be easily accessible. Also, our
translation-based consistency works the best when
the selected candidate spans are likely to be enti-
ties and do not cross entity boundaries. Therefore,
the strategy for candidate span selection could be a
direction for future improvement.
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