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The current circumstances of the Arab world have provided social media content creators with various topics
of discussion, leading to a rapid increase in the Arabic-generated content on social media. An informal written
form of spoken Arabic called Arabizi recently emerged as a commonly used language, attracting great interest
for sentiment analysis tasks. However, there are only a few resources for sentiment analysis as state-of-the-art
language models have not considered Arabizi yet. This paper presents the first version of ArabiziVec, a set of
pre-trained distributed word representations. ArabiziVec provides six different word embedding models to
deal with Arabizi sentiment analysis challenges. The presented work surpasses all the baseline sets for each
experiment, regardless of whether the test set is from a previously published dataset or an extracted one. To
the best of our knowledge, this is one of the first resources that deals with Arabizi content and semantics in
the context of sentiment analysis.
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1 INTRODUCTION
The rise of Arabic speakers on social networks has led to an upsurge of Arabic-generated content.
The importance of such content was further amplified due to the Arab spring [18, 31, 43]. The Arab
world has become a key player in both economics and politics. Therefore, there is a greater need
to understand, analyze and measure Arabic social media content. Sentiment analysis of Arabic
content is among the latest trends and applications in social media analysis. However, this field is
still in its infancy compared to the English language. A recent review by Oueslati et al. [45] studied
significant research in the context of Arabic sentiment analysis on social media. They argued that,
to develop this field further, informal content processing is required. Arabic speakers on social
media tend to express their opinion using their local dialects. They also use roman letters and
numerals and bring words from other languages such as English, French, and Italian to convey
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information. The use of multiple languages in addition to Arabic, written using roman letters and
numerals, is called Arabizi [4, 62].
The usage of Roman characters in Arabizi leads to a variety of spellings for a single word. For

example, ‘jamel’, ‘jameeel’ and ‘jamil’ all translate to ‘nice’ in English and are variations in spelling
of the same word. Consolidating such variants in spelling is an important task. The difficulty of
this task arises due to the inability to document every variant of spelling for each word in Arabizi.
Due to this, standardizing the translation from Arabizi to Arabic is tough. Sometimes, English
and French words are used along with Arabic in Arabizi as most Arabic speakers are bilingual or
multilingual. Terms from other local languages are used as well while speaking informal Arabic.
This phenomenon is known as code-switching and is prevalent among multilingual speakers. If one
considers posts on Twitter, a popular social media platform, one can see Arabic words written in
Latin characters intertwined with mentions of ‘happy birthday’ or ‘ça va’. Another characteristic of
Arabizi is the use of numbers instead of certain Arabic letters. For instance, ‘tamatim’ (translated to
tomato in English) can also be written as ‘6ama6im’ as the shape of some Arabic letters are similar
to numbers.

Lo et al. [37] reviewed existing approaches used for multilingual sentiment analysis. Although
they reviewed formal languages extensively, they also took into account informal and under-
resourced languages. They noted that a hybrid framework might be useful for developing sentiment
analysis tools for languages with limited resources. One of the most significant recent developments
in Natural Language Processing (NLP), particularly semantic models for sentiment analysis, is
the use of word embeddings [44]. Here, words are represented as vectors in a continuous space,
capturingmany syntactic and semantic relations among them. The benefits of using these distributed
word representations have been highlighted in several NLP tasks, including multilingual sentiment
analysis on social media [11, 52]. However, these benefits are associated with the English language
through the availability of several open-source word representationmodels in English [40, 53, 63, 64].
Arabic sentiment analysis systems fail in the context of social media due to the scarcity of such
resources. Arab speakers on social media are well-known to generate informal content. People
prefer using their local dialects and writing them using Latin letters and numbers. This informal
way of textually expressing opinions is called Arabizi.

Although there has been research on related topics [8, 10, 20, 58–61], there has not been extensive
work in this field. As it is an under-resourced language, creating semantic models for sentiment
analysis would aid in processing Arabizi content. The present paper proposes ArabiziVec, a dis-
tributed word representation, and an open-source project. ArabiziVec aims to provide the research
community interested in Arabic NLP with free-to-use and qualitative word embedding models. To
the best of our knowledge, there does not exist such a resource to deal with Arabizi content.

2 RELATEDWORK
Sentiment analysis and sentiment polarity detection are crucial tasks that produce useful results
used to control online bullying, understand product reviews, and identify the opinion of the public
about political activities [30, 46, 56]. Over the past couple of years, great strides have been made in
this field. Minaee et al. [42] provided a review of over 150 deep learning models and more than
40 popular datasets used in the past for text classification. They also analyzed the performance of
these models on the prevailing baselines. To extract both past and future contexts while classifying
a sentence according to the sentiment, Basiri et al. [12] proposed an Attention-based Bidirectional
CNN-RNN Deep Model that performed well on both long and short data. Li et al. [34] used
information about the sentiment lexicon to propose a sentiment padding method that improved
upon the proportion of useful sentiment information in each of the user reviews taken as an input.
This lexicon integrated two-channel CNN–LSTM model outperformed multiple existing baselines.
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The requirement for sarcasm detection has been on the rise due to its increased usage in online
forums and social media. Majumder et al. [38] proved that sentiment classification and sarcasm
detection are related tasks and presented a multitask learning-based method. They used a Gated
Recurrent Unit (GRU) based model to outperform existing state-of-the-art methods.
Apart from the latest developments in attention-based deep models Basiri et al. [12], ensemble

application of symbolic and subsymbolic AI for sentiment analysis Cambria et al. [15], and emotion
processing for polarity detection Cambria [14] ,one of the older but still useful developments in
sentiment analysis is the use of word embeddings [6, 16, 35, 57]. Rezaeinia et al. [51] proposed a
new method, known as Improved Word Vectors, to improve the efficiency of word embeddings
that have been pre-trained on large corpora for sentiment analysis. Word embeddings improve
the performance of a sentiment classification model significantly. Using label information from
sentiment lexicons, Li et al. [35] proved that word embeddings learned by incorporating document-
level sentiment ratio on the target word significantly improved the performance of a sentiment
analysis system. Rezaeinia et al. [50] created an improved version of word embeddings that increased
the accuracy of pre-trained word embeddings in sentiment classification. The work of Elrazzaz et al.
[24] justifies that language-specific word embeddings help achieve better performance, especially
with Arabic text. Zhou et al. [67] realized that although bilingual word embeddings took words
of two languages into account, it failed to account for the sentiment of words from both of these
languages. Their word embeddings captured the unaccounted sentiment, and experiments proved
that their embeddings outperformed the rest in all of the tested datasets. We believe that Arabizi
textual content, which consists of Arabic, English, and words from other regional languages, can
be approached with the same mindset and analysis.

Soliman et al. [54] provided a set of pre-trained word embeddings for Arabic. Using K-means
clustering and the t-Distributed Stochastic Neighbor Embedding (t-SNE) tool by Ulyanov, they
managed to capture the sentiment of the text. Even though they did not use any extensive feature
engineering or complex machine learning models, their Skip-Gram and Continuous Bag of Words
(CBOW) models gave results comparable to the final scores of SemEval-2017 Semantic Textual
Similarity Task 1. Although theirs was done for Arabic text, Tobaili et al. [60] proved that word
embeddings could be applied successfully to Arabizi as well. Their main goal was to create an
Arabizi sentiment lexicon, also known as SenZi, for the Lebanese dialect. They attempted to improve
upon it by using word embeddings for each of the sentiment words in Senzi. Word2Vec [39] has
already proved that building word representations in vector space has worked for tasks that require
English word embeddings. For Arabic word embeddings, Elrazzaz et al. [24] reviewed various
techniques that could be used to generate Arabic word embeddings that include the CBOW model,
the Skip-Gram model, GloVe [47], and the Arabic part of the Polyglot word embeddings. From their
intrinsic and extrinsic results, it was shown that CBOW and the Skip-Gram model outperformed
Polyglot.

There are not many papers that cater to dialectal Arabic (which is used frequently on social media)
in terms of word embeddings [7, 19]. For example, Dahou et al. [19] created a huge web-crawled
corpus to create word embeddings for Modern Standard Arabic (MSA) and dialectal Arabic text.
After cleaning and normalizing the data, they used the Word2Vec tool to build their CBOW and
Skip Gram models. Using the created word embeddings, they made a sentiment classification model
to classify reviews and tweets. Results show that using a Convolutional Neural Network (CNN)
model and initializing word vectors using pre-trained word embeddings helped the performance of
their model. Although Altowayan and Tao [7] derived their corpus from different sources (Arabic
newspapers and the holy Quran), they used the Word2Vec model as well. They did not attempt to
tune their sentiment classifiers for better results. They noted that despite that, their Support Vector
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Machine (SVM) classifier and Logistic Regression classifier performed better than others in most of
their baseline results.

Tobaili et al. [60] created an Arabizi Identification dataset and a Sentiment Analysis dataset.
They used a lexicon-based approach to evaluate their Arabizi sentiment lexicon, SenZi. Using
the approach proposed by Al-Twairesh et al. [1], SenZi attained a Recall of 79%, Precision of 66%,
and an F1-score of 72%. Their F1-score was 15% more than the baseline and showed that word
forms and variants were important in sentiment classification. Duwairi et al. [23] used supervised
learning to assign sentiment labels to tweets written in Arabizi. They decided to convert Arabizi
tweets (Latin text) to Arabic text. They applied a Naïve Bayes and an SVM classifier to classify
the tweets. As they realized that both classifiers misclassified neutral tweets, they changed their
pipeline to identify objective from subjective tweets. As a result, the SVM model fared better than
the Naïve Bayes model in terms of Precision (54.9% compared to 50.4%) and Recall (58.4% compared
to 53.7%). They also noted that filtering, such as removing stopwords and mapping emoticons to
their corresponding Arabic words, did not affect the Arabizi data significantly. Guellil et al. [28]
followed a similar approach by transliterating the input message from Arabizi to Arabic by using a
corpus extracted from Facebook. They used five different classifiers: SVM, Naïve Bayes, Logistic
Regression, Decision Tree, and Random Forest. For them, their Naïve Bayes classifier worked the
best with an F1-score of 78% and 76% for manual and automatic transliterated data, respectively. A
comparison between their results and the results obtained by Duwairi et al. [23] could not be made
as the data used by the latter was not available publicly. Baert et al. [10] created two datasets- one
for Arabizi tweets and the other for Arabizi sentiment analysis. For the task of classification, they
developed a BERT-based architecture for the same.

Tobaili [58] examined Twitter data across Lebanon and Egypt. He noted that 4.9% to 5.7% of
the Twitter data of those countries is in Arabizi. This large amount of data might carry valuable
information, and it is vital to study and develop a system to identify and classify sentiment. In
contrast, as Arabizi has its meaning conveyed by Arabic and is written using Latin text, most
sentiment classification models fail to classify Arabizi text. As noted by Aladeemy et al. [2], a
sentiment analysis study addressing the niche processing difficulty the Arabizi text poses has not
been developed, apart from the study by Duwairi et al. [23]. To the best of our knowledge, a set of
word embeddings specific to Arabizi sentiment analysis has not been created yet. Thus, in this paper,
we propose ArabiziVec, a distributed word representation, to provide the research community
interested in informal Arabic NLP tasks with a set of qualitative word embedding models.

3 ARABIZIVEC DATA COLLECTION AND PREPARATION
3.1 Data Collection
(1) SenZi

The SenZi dataset Tobaili et al. [60] mentioned in the previous section was used as a test
set in half of the experiments to test the effectiveness of the created word vectors on an
externally created dataset.

(2) Dataset Extracted From the Top n-grams of the Senzi SA dataset
As the previously described dataset consisted of only 1,602 tweets, a new dataset was extracted
from Twitter using the Python library - tweepy1. The first part of the dataset was extracted
according to the top unigrams, bigrams, and trigrams of the SA dataset provided by SenZi.
The top 100 tweets were extracted per keyword. Based on the Twitter users that posted the
most frequently in Arabizi, the next part of the dataset was extracted. The data was refined
by classifying those tweets according to the top n-grams for each sentiment of the SA dataset.

1https://www.tweepy.org/
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We noted that this dataset covered a limited vocabulary. This dataset was used to identify
which type of embeddings would prove to be the most useful.
For example, the bigram ‘ya rab’ was one of the top bigrams of the SenZi SA dataset. The
tweets extracted using it as a keyword can be seen in the table 1.

Table 1. Example for the tweets extracted from the top n-grams of the SenZi SA dataset.

Original n-gram Extracted Tweet

ya rab (If God wants)

happy birthday y a7la 7aga fe el donia de kolhaa we
32balll 1oooo sana ya rab
ya rab ne istiyorsan benden onu diliyorum senden

walikum salam gsubah bakhr have a great day and
stay safe and healthyameen ya rabjazaak allah blessing

thanks abby ameen ya rab

(3) Dataset Extracted from Lexicon of SenZi
Tobaili et al. [60] created an Arabizi lexicon consisting of around 13k negative and 11k positive
words. Taking these words as the set of keywords, tweets were extracted for each word.
A majority of the extracted dataset was obtained from this lexicon and was collected over
different weeks to overcome the previously observed limitation. There are 43,374 negative and
30,955 positive tweets in this dataset. It was used as the train set for half of the experiments.
For the rest of them, it was split into a train and test set.
Table 2 shows a couple of the tweets extracted from the word ‘saye2’. This word was present
in the SenZi lexicon that contained negative words.

Table 2. Example for the tweets extracted from the SenZi lexicon.

Original Word Extracted Tweet

saye2 (Very bad)

El nas el betklmny te2oly enta feen we ba3d keda te2oly
tab asr3 aw engez aw e5les lama ab2a ana el saye2 el taxi

Edilo 110 3shan yom saye2 gedan gedan
ana asfa kan ekhtyar saye2 meny
Howa begad saye2 lel daraga

3.2 Preprocessing
Preprocessing the data prepares it for classification. This is done by cleaning the data and removing
noise and other features that do not contribute to the overall sentiment of the sentence. It has been
seen that preprocessing the input improves the classification accuracy significantly [9, 22, 29].

As some words were present in both the positive and negative lists, those words were removed
before extracting according to the lexicon present in the list of each sentiment. The data was cleaned
by removing retweet symbols, Twitter mentions (@ user_name), non-Arabizi characters, newline
characters, tabs, and extra spaces. Finally, the extracted datasets were combined while ensuring
that none of the tweets were repeated. The distribution of the same can be found in Table 3.

3.3 Statistical Description
In Table 4, we present a statistical description of our dataset. The average length of the SenZi SA
dataset is the least, with a length of 33.1.

, Vol. 1, No. 1, Article . Publication date: December 2024.



6 Asrita Venkata Mandalam, Oumaima Oueslati, Erik Cambria, and Yashvardhan Sharma

Table 3. Distribution of data across each class in each Dataset.

Source Positive Negative Total
SenZi 801 801 1,602

Extracted From the top n-grams
of the SenZi SA dataset 1,360 1,712 3,072

Extracted from the Lexicon of SenZi 30,955 43,374 74,329

Fig. 1. Text length distribution for the Senzi
Dataset.

Fig. 2. Text length distribution for the dataset
extracted from the top n-grams of the Senzi SA
dataset.

Fig. 3. Text length distribution for the dataset extracted from the Lexicon of SenZi

The total number of words and unique words are also the least out of the three datasets. The
dataset extracted from the top n-grams of the SenZi SA dataset had the largest average length of the
lot. The dataset extracted from the SenZi lexicon had the highest number of documents. Therefore,
it had the highest number of words and unique words for both the balanced and unbalanced datasets.
Figures 1, 2 and 3 show the distribution of the text length of the three datasets, specifically, the
unbalanced datasets.
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Table 4. Statistical Description of the used Datasets.

Dataset Number of
Documents

Number
of
Unique
Tokens

Total
Number
of Words

Average
Length Ratio

Senzi Dataset 1,602 4,783 9,628 33.1 Balanced
Extracted from
the top n-grams
of the Senzi SA
dataset

2,720 9,658 30,903 56.55 Balanced

Extracted from
the top n-grams
of the Senzi SA
dataset

3,072 10,874 35,700 57.85 Un-
Balanced

Extracted from
the Lexicon of
SenZi

61,910 116,809 605,456 50.97 Balanced

Extracted from
the Lexicon of
SenZi

74,329 132,858 732,001 51.26 Un-
Balanced

4 WORD EMBEDDINGS
Word embeddings play an important role in sentiment analysis due to their ability to capture the
similarity, or lack of it, between different words regarding their contexts. Capturing this information
and details about its appearance in a positive or negative connotation helps the classifier mark the
sentiment of sentences it has not seen previously. Some of the state-of-the-art word embedding
models are Word2Vec [39], GloVe [47], FastText [13], BERT [21] and ELMo [48].

4.1 Techniques
Word2Vec was used as multiple works focusing on embedding-creation for Arabic have used the
same [24, 54]. As most previous work on Arabic word embeddings explored CBOW, the presented
work decided to explore CBOW as well, along with Skip-Gram, GloVe, and FastText. Embeddings
such as GloVe capture global context, something that Word2Vec does not include. Although it is
known that Word2Vec architectures along with negative sampling are more efficient in the case
of Arabic word embeddings [55], this paper tests the same for Arabizi. FastText was used as it
incorporates the use of sub-word information. This feature is useful as there are cases when a word
in Arabizi is written differently in different tweets but may contain certain common sub-words
with its other written forms.

WORD2VEC was created by Mikolov et al. [39] in 2013. It is used to identify and detect
similarities between words in terms of their meaning and usage in text. Each word in the trained
corpus is identified by a set of vectors and is then used in the form of embeddings for various
Natural Language Tasks such as sentiment analysis and recommendation systems. There are two
architectures used to create Word2Vec word embeddings - CBOW and Skip-Gram.
The CBOW model takes into account the context of the surrounding words before making a

prediction. For example, in the sentence ‘the dog jumped over the pond’, ‘jumped’ can be predicted
by looking at the rest of the words of the sentence. To decide how many context words need to be
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Fig. 4. CBOWModel. Fig. 5. Skip-Gram Model.

used, a window size is set. Suppose the window size is two, the words ‘dog’ and ‘over’ are used
together as context words to determine the target word ‘jumped’. Figure 4 gives a representation
of how CBOW works. As the number of context words is set to 2, two 1xN input vectors will be
used in the input layer. ‘N’ represents the size of the sentence. It is then passed to a hidden layer
which multiplies the vectors with an NxM matrix. ‘M’ is the dimensionality of the output vectors.
It produces output vectors with a size of 1xM. They are summed up to produce the output.

The Skip-Gram architecture predicts the context words using the target word. Taking the same
example as above, the target word ‘jumped’ helps predict context words such as ‘dog’ and ‘over’.
Depending on the window size, the context word ‘pond’ can also be predicted from ‘jumped’. The
working of this model can be seen in Figure 5. Here, the input is one target word and the output of
this model is W (1xM) vectors representing the predicted context words. W is the window size.
Skip-Gram is known to work better than the CBOW method as it can capture multiple meanings
for the same word. For example, the word ‘chair’ can mean a seat or the person in charge of a
meeting. The same word will have two different vector representations.
Word2Vec works well as it captures the context while assigning vectors to each word in the

vocabulary. This model can be used for any dataset, regardless of size. Unfortunately, this model
does not capture rare or out of vocabulary (OOV) words. Another disadvantage of both Skip-Gram
and CBOW is the difficulty of finding optimal values for their parameters.
GLOVE embeddings [47] capture global context. Similar to Word2Vec, it also captures local

context. It is a count-based model and uses a co-occurrence matrix of size NxN, where N is the
number of words in the given corpus. It uses the ratio between the probabilities of the co-occurrence
of two different words to detect word similarity. GloVe is advantageous as it is faster thanWord2Vec
embeddings. It also assigns a lower weight for stopwords such as ‘the’ and ‘a’, thus increasing the
accuracy of the model. Similar to the Word2Vec model, it cannot handle OOV words during its
implementation.
FASTTEXT [13] is a library that aids in word representation and text data classification. It

was developed by Bojanowski et al. and unlike the previously discussed embeddings, it takes into
account rare and OOV words. Using a bag of character n-grams to represent words in the given
corpus, it creates a vector representation for each word. Sometimes, rare words have common
subwords with those existing in the input corpus. For OOV words, FastText takes care of these with
their character level n-gram model. For example, if the words ‘Subset’ and ‘Categorical’ exist in the
train set but the word ‘Subcategory’ exists only in the test set, FastText will connect the meanings
of the words in the train set to the new word in the test set. This characteristic of the architecture
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is useful in processing Arabizi as some words that have the same meaning and spelling in Arabic
may be written in various ways when using the Roman script. For example, ‘jamel’, ‘jamil’ and
‘jameel’ have the same meaning. If the first two lie in the training data and the latter in the test data,
FastText embeddings will be able to identify that they have a similar meaning due to the sub-word
‘jam’ and character ‘l’ at the end of the words.

4.2 Building the models
Word2Vec embeddings [39] have proven to be useful in Arabic sentiment analysis. Many have used
CBOW and Skip-Gram for their experiments [24, 54]. After obtaining the vocabulary of the train
set, the Word2Vec vectors for CBOW and Skip-Gram are created. After setting the dimensionality
as 100 for both the CBOW and Skip-Gram vectors, the model is trained for 30 epochs. A negative
sampling size of 2 was used. Negative sampling helps minimize the similarity score of words that
do not frequently occur together [25, 41]. Words that had a frequency equal to or greater than two
were considered while creating the embeddings. A window size of 3 is used. This is done to ensure
that the distance between the predicted and current word is not more than 3. As Tweets can have
a maximum length of 140 characters, keeping the window size higher would consider unrelated
words and reduce the effectiveness of the word vectors generated. The initial and final learning
rates are 0.1 and 0.001 respectively. The learning rate drops linearly as the model is being trained.
The vectors of the CBOW and Skip-Gram models are concatenated. This is then used to create an
embedding matrix and the input data before passing it to the neural networks.

GloVe [47] was trained differently as compared to the Word2Vec embeddings. The trained GloVe
embeddings were converted to the Word2Vec format using a function from the Gensim library
to observe the vectors of different words. Then, the embeddings generated from the data were
appended to it. The classifiers then used these embeddings.
The FastText embedding creation followed a path similar to that of the creation of the CBOW

and Skip-Gram embeddings. For this representation of the dataset, the vectors were created with
a dimensionality of 100, a window size of 5. A window size of 3 was originally used, but the
embeddings worked more effectively when the size was 5. It was trained for five epochs. A negative
sampling size of 10 was used. The created FastText embeddings were an extension of the Skip-Gram
model, except that subword information was used. Grave et al. [26] proved its effectiveness. They
used FastText along with CBOW vectors to create word representation for 157 languages.

Although some of the previous work done in the field of word embeddings for Arabic mentioned
that the Word2Vec model worked the best for them [3, 5, 24, 54], this work aimed to explore and
compare the results of different word embeddings before choosing one to move forward with one or
a combination of two embeddings. There were three word embedding models that were compared.
The first consisted of a combination of CBOW and Skip-Gram vectors, the second were the GloVe
embeddings, and the third was a combination of CBOW and FastText vectors. All three embeddings
were trained from scratch and were tested on the CNN and LSTM models described below.

(1) CNN model
The CNN model consisted of an embedding layer that took the embedding matrix created
earlier as an input. After using a 1D convolutional layer with 32 output filters and a convolu-
tional window size of 2, the model uses max pooling to get the top features. The dropout
layers have a rate of 0.4 and batch normalization has been used to prevent overfitting. Adam
optimizer has been used with a learning rate of 0.001. The structure of the model can be seen
in Figures 6 and 8.

(2) LSTM model
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Fig. 6. Diagram of the CNN model used to test the embeddings.

Fig. 7. Diagram of the LSTM model used to test the embeddings.

Table 5. Classification report used to select the embeddings.

Word Embedding Model Precision Recall F1-Score Accuracy

CBOW + Skip-Gram CNN 0.94 0.94 0.94 0.94
LSTM 0.77 0.61 0.56 0.60

GloVe CNN 0.93 0.93 0.93 0.93
LSTM 0.90 0.90 0.90 0.90

CBOW + FastText CNN 0.72 0.63 0.56 0.63
LSTM 0.93 0.93 0.93 0.93

The LSTMmodel, as shown in Figures 7 and 9, also had an embedding layer for the embedding
matrix created by the previous step. It had two LSTM layers. The dimensionality of the output
space for the first was 64 and it had a dropout rate of 0.3. For the second layer, the output
dimensionality was 32, with a dropout rate of 0.3 as well. Batch normalization was used.

Table 5 shows that the CBOW and Skip-Gram embeddings perform the best for the CNN model
with an F1-score of 0.94. However, for the LSTM model, the CBOW and FastText word embeddings
perform the best with an F1-score of 0.93. Thus, the CBOW and Skip-Gram embeddings were
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Fig. 8. The CNN model used to test the embed-
dings.

Fig. 9. The LSTM model used to test the embed-
dings.

chosen, along with the FastText and CBOW embeddings. The dataset used here was the dataset
that was extracted from the top n-grams of the Senzi dataset.
Table 5 showed that the CBOW and Skip-Gram model performed the best for the CNN model.

For the LSTM model, the CBOW and FastText embeddings attained the highest score. As the GloVe
embeddings performed poorer in both models, it was not used to test the rest of the datasets.
Although GloVe does discount stopwords, the language of Arabizi does not contain them, thereby
eliminating the need for one of the advantages of using GloVe embeddings. As mentioned in
section 2, CBOW and Skip-Gram embeddings were a popular choice for creating Arabic word
embeddings. It is also not surprising that the CBOW and FastText embeddings perform well as a
similar methodology with a few tweaks was used to create word embeddings for 157 languages [26].
For the rest of the experiments, the dataset that was extracted from the top n-grams of the Senzi
dataset was not used as it contained a limited vocabulary. This was due to the fact that it was
extracted based on the top n-grams of a small dataset, the SenZi dataset. As a result, the word
embeddings were very specific and Table 5 had a set of high values.
The details about the created and trained CBOW, Skip-Gram, and FastText word embeddings

can be seen in Table 6. The CBOW_ub, SG_ub, and FastText_ub models have been trained on an
unbalanced dataset, while the rest have been trained on a balanced dataset.

5 DEEP LEARNING CLASSIFIERS
Deep learning models for text classification using Keras [17] were used to compare our models
with other models. It would help us gain a fair idea about how our embeddings model fared with a
simple neural network (in terms of the number of layers). Two experiments were performed. The
first round did not include Word2Vec embeddings, while the second round did. The models, along
with a short description of their components, are given below.
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Table 6. Details about each word embedding model.

Model Name Number of
Documents

Number
of
Unique
Tokens

Minimum
Word
Frequency

Window
Size Technique

CBOW_ub 74329 132858 2 3 CBOW
SG_ub 74329 132858 2 3 Skip-Gram

FastText_ub 74329 132858 5 5 FastText
CBOW_b 61910 132858 2 3 CBOW
SG_b 61910 132858 2 3 Skip-Gram

FastText_b 61910 132858 5 5 FastText

TextCNN
This model was proposed by Kim [32] and implemented as shown in Figure 10. After using an

Fig. 10. TextCNN. Fig. 11. TextRNN

embedding layer that took the embedding matrix as an input, it used a convolutional layer with
multiple filter sizes. The model proposed in this paper used sizes of 3, 4, and 5. Max-pooling was
then used to capture the most important features from the feature maps. Finally, a fully connected
softmax layer was used. The output was a distribution of the probabilities of each class.
TextRNN

Liu et al. [36] proposed this model. It uses a recurrent neural network (RNN) layer to classify
text. The tested model used an output dimensionality of 128. The components of this model can be
seen in Figure 11.
TextBiRNN

This model is an improved version of the TextRNN model. All of the components are similar to
the TextRNN model, except that it uses a bidirectional RNN layer instead of the RNN layer. The
output dimensionality of the bidirectional RNN layer is 128 as well. The model can be seen in
Figure 12.
TextAttBiRNN

This model is based on the implementation in the paper by Raffel et al. [49]. The implemented
model uses an Attention layer that helps different states (in terms of time) of the same model for
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Fig. 12. TextBiRNN. Fig. 13. TextAttBirnn

direct long-term dependencies. A tensor with the shape (samples, steps, features) is taken as an
input, and a tensor with the shape (samples, features) is given as an output by this layer. It is based
on the Feed-Forward Attention mechanism. After this, a fully connected softmax layer was used.
The final output was a distribution of the probabilities of each class.

HAN
The Hierarchical Attention Networks (HAN) model for document classification was proposed

by Yang et al. [65]. There are four stages in this architecture. The first part is the word encoder. A
sentence is taken as an input and each word is embedded to vectors using the embedding matrix
created previously. Annotations of these words are obtained using a bidirectional GRU. This helps
summarize information from both directions of a sequence for a specific word. The implemented
model had an output dimensionality of 128. The word attention layer was used to extract words
that contributed to the meaning of a sentence. A summation of the most important words created a
sentence vector. The attention layer used here was based on the Feed-Forward Attentionmechanism,
similar to the TextAttBiRNN model. Every step till here was done on the same time step, and it was
achieved using a timeDistributed layer. The methodology used in the first stage was used again
to encode the previously calculated sentence vectors. The Attention layer was used once again to
measure the importance of each sentence and summarize the importance of the overall document.
Finally, a fully connected layer was used to classify the text.

Fig. 14. HAN. Fig. 15. RCNN.
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RCNN
The Recurrent Convolutional Neural Network (RCNN) model was proposed by Lai et al. [33]. The

first stage of this model uses a bidirectional recurrent neural network to capture the left and right
contexts of each word. The left context is captured during the forward feed and the right context is
obtained during the backward scan of the input text. Each of the RNN layers in the model proposed
by this paper used an output dimensionality of 128. A linear transformation along with the tanh
activation function is used to produce the input to the next stage - text representation learning.
The number of output filters of the 1-D convolutional layer is 64. The convolutional window had a
size of 1. In the text representation learning stage, a max-pooling layer is used to extract essential
information in the document. A fully connected softmax layer was used to output a distribution of
the probabilities of each class.

Fig. 16. RCNNVariant.

RCNNVariant
This model is an improved version of the RCNN model. The previous model used three inputs

as it had the current, right, and left contexts. This one uses a single input. Instead, a bidirectional
LSTM is used to encode the context. Multiple layers of CNNs are used, with different kernel sizes
ranging from 1 to 5 and an output dimensionality of 128. Instead of using the tanh activation
function, the rectified linear activation function (ReLU) is used. Both average and max pooling
have been used and concatenated. It has been seen that a combination of both performs better than
both each pooling method by itself. It also reduces overfitting [66] [27].

6 EVALUATION
In Figure 17, we illustrate the general workflow of the proposed work.

6.1 Similarity scores of Sentiment words
For the language of English, there are certain benchmark vectors to identify whether the given
word embeddings have been able to represent the vectors of words from the data correctly. As
Arabizi is an under-resourced language, a set of words were taken to identify and compare their
similarity scores. Table 7 represents the words taken for the benchmark and their similarity scores.
The words ‘jamel’, ‘helow’ and ‘hassan’ translate to ‘good’ or ‘nice’ in English while ‘wehesh’,

‘khara’ and ‘saye2’ mean ‘bad’. A comparison of words with opposite meanings was made and
their similarity scores have been written in bold in the table. Some of the opposite words receive
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Fig. 17. General diagram of the proposed model.

a negative score in some cases, indicating that their vector values are not similar. Except for the
Skip-Gram embeddings that were trained on a skewed dataset, the rest of the embeddings had
a higher similarity score for words with similar meaning, compared to the words with opposite
meanings. In sarcastic social media comments and tweets, positive words are used negatively,
and similarly, negative terms with a positive connotation. This leads to a higher similarity score
between positive and negative words than what was expected.

6.2 Baseline
(1) Extracted Tweets as Train Set, Senzi Dataset as Test Set

This experiment has a baseline value of 60%. As the proposed models use the embeddings
that were trained on the extracted tweets to test an unrelated dataset, this paper aims to
achieve an F1-score of at least 60% for each of the Keras models.

(2) Extracted Tweets as Train and Test Set
This experiment has a baseline value of 70%. In this experiment, the extracted dataset was
split with 80% of it being used to train embeddings and the other 20% used to test the trained
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Table 7. Similarity scores of words with similar and opposite meanings.

Model Word 1 Word 2 Similarity Score

CBOW

jamel helow 0.06
jamel hassan 0.23
helow hassan 0.11
wehesh khara 0.24
wehesh saye2 0.29
khara saye2 0.06

wehesh helow -0.05

Skip-Gram

jamel helow 0.19
jamel hassan 0.31
helow hassan 0.05
wehesh khara 0.36
wehesh saye2 0.38
khara saye2 0.25
saye2 helow 0.08

FastText

jamel helow 0.56
jamel hassan 0.75
helow hassan 0.50
wehesh khara 0.55
wehesh saye2 0.89
khara saye2 0.53
khara helow 0.46

embeddings. The proposed methodology aims to achieve an F1-score of at least 70% for each
of the Keras models.

6.3 ArabiziVec Sentiment Classification
Table 8 shows the results obtained while training the model on the extracted dataset and testing it
on the Senzi SA dataset.
As the extracted dataset had more negative than positive tweets, the negative tweets were

shuffled and reduced to the same count as that of the positive tweets. Here, the train set did not
contain any tweets that were common with those in the Senzi SA dataset and the tweets extracted
from its top n-grams. The baseline for this experiment is 0.60 for the F1-score. From the table, it
can be seen that all of the models that used the CBOW and Skip-Gram embeddings surpassed
this baseline. For the Keras models, the TextRNN model performed the best with an F1-score of
0.71. The lowest F1-score achieved is at 0.66 and was obtained by the RCNNVariant model. For the
CBOW and FastText embeddings, the highest value obtained by the Keras models was 0.71 and
was obtained by the HAN model. The lowest scoring Keras model was the TextRNN model with an
F1-score of 0.67. However, for the simple neural network models, the CNN model received a low
F1-score of 0.33. The LSTM model scored a value of 0.71 for the F1-score.

To check if training a skewed dataset would attain better results, the models were trained on the
extracted dataset and tested on the Senzi SA dataset. The train set did not contain any tweets that
were common with those in the Senzi SA dataset and the tweets extracted from its top n-grams.
There were more negative than positive tweets. Table 9 gives the results obtained for the same.
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Table 8. Classification report of the extracted dataset as train set, the Senzi SA dataset as test set. Same ratio
of positive to negative tweets.

Prec-
ision Recall F1-

Score
Acc-
uracy

CNN 0.68 0.68 0.68 0.68Simple NN
Models LSTM 0.71 0.70 0.70 0.70

TextCNN 0.67 0.67 0.67 0.67
TextRNN 0.71 0.71 0.71 0.71
TextBiRNN 0.70 0.70 0.70 0.70

TextAttBiRNN 0.70 0.69 0.69 0.69
HAN 0.69 0.69 0.69 0.69
RCNN 0.69 0.68 0.68 0.68

CBOW +
Skip-
Gram
Embed-
dings

Keras
Models

RCNNVariant 0.68 0.67 0.66 0.67
CNN 0.25 0.50 0.33 0.50Simple NN

Models LSTM 0.71 0.71 0.71 0.71
TextCNN 0.68 0.68 0.68 0.68
TextRNN 0.68 0.68 0.67 0.68
TextBiRNN 0.68 0.68 0.68 0.68

TextAttBiRNN 0.70 0.70 0.70 0.70
HAN 0.71 0.71 0.71 0.71
RCNN 0.68 0.68 0.68 0.68

CBOW +
FastText
Embed-
dings

Keras
Models

RCNNVariant 0.69 0.69 0.69 0.69

The baseline to beat was 0.60 for this experiment as well. For the CBOW and Skip-Gram embed-
dings, all of the tested classifiers surpassed the baseline. The highest scoring model was TextRNN,
with an F1-score of 0.73. The lowest-scoring one was the RCNNVariant model, with a score of 0.66.
The highest scoring Keras model for the CBOW and FastText embeddings was the HAN model,
with a value of 0.72. The lowest-scoring models were the TextCNN and TextAttBiRNN models with
an F1-score of 0.69. Among the tested simple neural network models, the LSTM model scored 0.71,
and the CNN model obtained an F1-score of 0.36.
Table 10 gives the classification report obtained by training and testing the models on the

extracted dataset. The number of positive and negative tweets was equal. 80% of the dataset was
used for training and 20% for testing the classifiers. As the dataset was extracted and not obtained
from any previous works, the baseline is 0.70. For the CBOW and Skip-Gram embeddings, the
simple neural networks performed well with F1-scores of 0.82 and 0.88 for the CNN and LSTM
models respectively. Among the tested Keras models, the HAN and TextAttBiRNN models scored
the highest with an F1-score of 0.84. The lowest scoring model was the TextCNN model, with a
value of 0.72. For the CBOW and FastText embeddings, the highest-scoring Keras model is the
HAN model, with a score of 0.87. The lowest scoring Keras model was the TextCNN model with a
score of 0.71. For the simple neural network models, the CNN and LSTM models attained F1-scores
of 0.81 and 0.89 respectively.
When more negative than positive tweets are used in the dataset, the results can be seen in

table 11. The extracted dataset has been used as the train and test set and has been split in the ratio
80:20. Among the results for the Keras models that used the CBOW and Skip-Gram embeddings,
the TextCNN model scored the lowest with a value of 0.74. The TextAttBiRNN and HAN models
scored the highest with an F1-score of 0.88. For the simple neural network models, the CNN and
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Table 9. Classification report of the extracted dataset as train set, the Senzi SA dataset as test set. Skewed
ratio of positive to negative tweets.

Prec-
ision Recall F1-

Score
Acc-
uracy

CBOW +
Skip-
Gram
Embed-
dings

Simple NN
Models

CNN 0.71 0.69 0.69 0.69
LSTM 0.72 0.71 0.71 0.71

Keras
Models

TextCNN 0.68 0.67 0.67 0.67
TextRNN 0.74 0.73 0.73 0.73
TextBiRNN 0.69 0.69 0.69 0.69

TextAttBiRNN 0.70 0.70 0.70 0.70
HAN 0.71 0.71 0.71 0.71
RCNN 0.70 0.70 0.70 0.70

RCNNVariant 0.66 0.66 0.66 0.66

CBOW +
FastText
Embed-
dings

Simple NN
Models

CNN 0.64 0.51 0.36 0.51
LSTM 0.71 0.71 0.71 0.71

Keras
Models

TextCNN 0.69 0.69 0.69 0.69
TextRNN 0.71 0.71 0.71 0.71
TextBiRNN 0.70 0.70 0.70 0.70

TextAttBiRNN 0.73 0.70 0.69 0.70
HAN 0.74 0.72 0.72 0.72
RCNN 0.70 0.70 0.70 0.70

RCNNVariant 0.72 0.70 0.70 0.70

LSTM scored 0.85 and 0.90 respectively. For the CBOW and FastText embeddings, the HAN model
scored the highest with an F1-score of 0.88. All of the Keras models that used this set of embeddings
surpassed the baseline F1-score. For the simple neural network models, the CNN scored a value of
0.82. The LSTM model obtained a value of 0.90.
In Tables 8, 9, 10 and 11, ‘Simple NN Models’ refer to the Simple Neural Network (NN) models

that were discussed in section 4.2 which were used to select the set of embeddings to be used in
these experiments.

Fig. 18. A comparison of the F1-scores obtained by the four experiments.
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Table 10. Classification report of the extracted dataset as train and test set. Same ratio of positive to negative
tweets.

Prec-
ision Recall F1-

Score
Acc-
uracy

CBOW +
Skip-
Gram
Embed-
dings

Simple NN
Models

CNN 0.82 0.82 0.82 0.82
LSTM 0.88 0.88 0.88 0.88

Keras
Models

TextCNN 0.73 0.73 0.72 0.73
TextRNN 0.79 0.78 0.78 0.78
TextBiRNN 0.79 0.79 0.79 0.79

TextAttBiRNN 0.85 0.85 0.84 0.85
HAN 0.86 0.84 0.84 0.84
RCNN 0.74 0.74 0.74 0.74

RCNNVariant 0.76 0.76 0.76 0.76

CBOW +
FastText
Embed-
dings

Simple NN
Models

CNN 0.83 0.82 0.81 0.82
LSTM 0.89 0.89 0.89 0.89

Keras
Models

TextCNN 0.71 0.71 0.71 0.71
TextRNN 0.79 0.79 0.78 0.79
TextBiRNN 0.78 0.78 0.78 0.78

TextAttBiRNN 0.86 0.84 0.84 0.84
HAN 0.87 0.87 0.87 0.87
RCNN 0.74 0.74 0.74 0.74

RCNNVariant 0.76 0.76 0.76 0.76

A comparison of the performances of the various models and datasets can be seen in Figure 18.
Here, Experiment 1, 2, 3 and 4 refer to tables 8, 9, 10 and 11 respectively.

7 DISCUSSION
The first set of experiments on the ‘Extracted from Lexicon of SenZi’ dataset use the SenZi Dataset
as the test set and the ‘Extracted from Lexicon of SenZi’ dataset as the train set. The results are
illustrated in Table 8 and Table 9. The train set did not contain any tweets that were common with
the SenZi Dataset or Dataset Extracted From the Top n-grams of the Senzi SA dataset to avoid any
bias towards the vocabulary of the test set. For the ‘Extracted from Lexicon of SenZi’ dataset, we
found that all of the Keras models cleared the baseline of 0.60 for both the equal and skewed ratio
of tweets. Although the simple CNN model that used the CBOW and FastText embeddings did not
clear the baseline F1-score (for both the same and skewed ratio of positive to negative tweets), the
results of the Keras models were focused on as they are the standard set of Keras classifiers. The
highest F1-scores achieved were the same for both sets of embeddings.
Tables 10 and 11 report the results of the second set of experiments. They used 80% of the

‘Extracted from Lexicon of SenZi’ dataset as the train set and the remaining as the test set. All the
Keras models tested on the CBOW and Skip-Gram embeddings cleared this baseline. The CBOW
and FastText embeddings were tested on the same dataset and set of Keras models and cleared the
baseline as well. When the same set of embeddings (CBOW and FastText) were tested on a skewed
ratio of negative to positive tweets, all of the Keras models surpassed the baseline F1-score. For the
skewed dataset, all of the models cleared the baseline as well.
We noted that the CBOW and FastText embeddings performed slightly better than the CBOW

and Skip-Gram embeddings in the case of a skewed dataset. Comparing the scores attained by the
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Table 11. Classification report of the extracted dataset as train and test set. Skewed ratio of positive to
negative tweets.

Prec-
ision Recall F1-

Score
Acc-
uracy

CBOW +
Skip-
Gram
Embed-
dings

Simple NN
Models

CNN 0.86 0.85 0.85 0.85
LSTM 0.90 0.90 0.90 0.90

Keras
Models

TextCNN 0.74 0.74 0.74 0.74
TextRNN 0.81 0.81 0.80 0.81
TextBiRNN 0.82 0.82 0.82 0.82

TextAttBiRNN 0.88 0.88 0.88 0.88
HAN 0.88 0.88 0.88 0.88
RCNN 0.76 0.76 0.76 0.76

RCNNVariant 0.79 0.79 0.79 0.79

CBOW +
FastText
Embed-
dings

Simple NN
Models

CNN 0.85 0.83 0.82 0.83
LSTM 0.91 0.91 0.90 0.91

Keras
Models

TextCNN 0.74 0.74 0.74 0.74
TextRNN 0.82 0.81 0.80 0.81
TextBiRNN 0.82 0.82 0.82 0.82

TextAttBiRNN 0.89 0.88 0.88 0.88
HAN 0.88 0.88 0.88 0.88
RCNN 0.78 0.78 0.78 0.78

RCNNVariant 0.79 0.79 0.79 0.79

various Keras models, the embeddings had similar scores except for the RCNN model. For this
model, the CBOW and FastText embeddings performed a bit better. Regardless of the balance of the
dataset, the embeddings performed well, and some of the classifiers managed to score an F1-score
18% over the baseline of 70%. According to the Frequently Asked Questions (FAQ) on the FastText
website2, the FastText embeddings perform well on unbalanced data due to the hierarchical softmax
loss. For the language of Arabizi, the classification of positive tweets are easier than negative tweets
as their vocabulary is more limited than that of the latter. As FastText embeddings can produce
vectors for unknown words using substrings of known words, the higher number of negative tweets
aid in the same.
Overall, the proposed word embeddings models cleared the baseline of 0.60 when the SenZi

Dataset was taken as the test set. When the ‘Extracted from Lexicon of SenZi’ dataset was used as
the train and test set, the word embedding models managed to surpass the baseline F1-score of 0.70.
For both sets of experiments, some of the Keras models managed to score more than 0.10 above the
baseline (more than 0.70 and 0.80 respectively), proving that the proposed word embeddings are
useful and can potentially be used for a variety of tasks.

8 CONCLUSION
This paper proposed ArabiziVec, a new distributed word representation for Arabizi, and an open-
source project. It provides the field of Arabic NLP with free-to-use and qualitative word embedding
models. Two types of word embeddings were presented in this paper: the first type consists of
CBOW and Skip-Gram embeddings, the second is created using CBOW and FastText.

2https://fasttext.cc/docs/en/faqs.html
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The proposed word embedding models surpass common baselines. Regarding the word embed-
dings models, CBOW and Skip-Gram embeddings performed the best in the case of a balanced
dataset. For the case where there were more negative than positive tweets, the CBOW and Fast-
Text embeddings performed better. An error analysis was presented to understand the reason for
different embeddings working better in different scenarios.
Although the proposed baseline for the experiments that used an 80:20 split for the dataset

was set at an F1-score of 0.70, six out of nine models have surpassed that score and achieved 0.80
and beyond for both, the CBOW and Skip-Gram embeddings as well as the CBOW and FastText
embeddings. This proves that ArabiziVec enhances the accuracy of sentiment analysis tasks. In the
future, we plan to extend ArabiziVec to other tasks, e.g., question answering and dialogue systems.
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