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Abstract

Predicting the a↵ective valence of unknown multi-

word expressions is key for concept-level sentiment

analysis. A↵ectiveSpace 2 is a vector space model,

built by means of random projection, that allows

for reasoning by analogy on natural language con-

cepts. By reducing the dimensionality of a↵ec-

tive common-sense knowledge, the model allows

semantic features associated with concepts to be

generalized and, hence, allows concepts to be intu-

itively clustered according to their semantic and

a↵ective relatedness. Such an a↵ective intuition

(so called because it does not rely on explicit fea-

tures, but rather on implicit analogies) enables

the inference of emotions and polarity conveyed

by multi-word expressions, thus achieving e�cient

concept-level sentiment analysis.

Introduction

Concept-level sentiment analysis focuses on a seman-
tic analysis of text through the use of web ontologies
or semantic networks, which allow the aggregation of
conceptual and a↵ective information associated with
natural language opinions. By relying on large seman-
tic knowledge bases, such approaches step away from
blind use of keywords and word co-occurrence count,
but rather rely on the implicit features associated with
natural language concepts.

Unlike purely syntactical techniques, concept-based
approaches are able to detect also sentiments that
are expressed in a subtle manner, e.g., through the
analysis of concepts that do not explicitly convey
any emotion, but which are implicitly linked to other
concepts that do so. The bag-of-concepts model can
represent semantics associated with natural language
much better than bags of words. In the bag-of-words
model, in fact, a concept such as cloud computing

would be split into two separate words, disrupting the
semantics of the input sentence (in which, for example,
the word cloud could wrongly activate concepts related
to weather).
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The analysis at concept-level allows for the inference
of semantic and a↵ective information associated with
natural language opinions and, hence, enables a com-
parative fine-grained feature-based sentiment analysis.
Rather than gathering isolated opinions about a whole
item (e.g., iPhone6), users are generally more inter-
ested in comparing di↵erent products according to their
specific features (e.g., iPhone6’s vs GalaxyS6’s touch-
screen), or even sub-features (e.g., fragility of iPhone6’s
vs GalaxyS6’s touchscreen).

In this context, common-sense knowledge is key for
properly deconstructing natural language text into sen-
timents – for example, to appraise the concept small

room as negative for a hotel review and small queue

as positive in a patient opinion, or the concept go read

the book as positive for a book review but negative
for a movie review. The inference of emotions and po-
larity from natural language concepts, however, is a
formidable task as it requires advanced reasoning capa-
bilities such as common-sense, analogical, and a↵ective
reasoning.

In this work, we present A↵ectiveSpace 2, a novel
vector space model for concept-level sentiment anal-
ysis that allows for reasoning by analogy on natural
language concepts, even when these are represented by
highly dimensional semantic features. In this sense, Af-
fectiveSpace 2 can be seen as a powerful tool to address
the emerging issue of “Big Dimensionality” (Zhai, Ong,
and Tsang 2014) in the context of natural language pro-
cessing (NLP) and sentiment analysis. The proposed
model, however, should not be considered solely as a
NLP tool, but rather as a framework for analogical rea-
soning that can be embedded in potentially any cog-
nitive system dealing with real-world semantics, e.g.,
concepts associated with images (Cambria and Hussain
2012a), audio (Principi et al. 2015), handwriting (Wang
et al. 2013), and multimodal data (Poria et al. 2015).

The rest of the paper is organized as follows: the first
section presents related work in the field of concept-level
sentiment analysis; the following two sections describe
in detail how A↵ectiveSpace 2 is built and clustered,
respectively; an evaluation section proposes experimen-
tal results for an opinion mining task; finally, the last
section provides some concluding remarks.



Related Work

Concept-level sentiment analysis is a NLP task that has
recently raised growing interest both within the scien-
tific community, leading to many exciting open chal-
lenges, as well as in the business world, due to the re-
markable benefits to be had from marketing and finan-
cial market prediction.

The potential applications of concept-level sentiment
analysis, in fact, are countless and span interdisci-
plinary areas such as stock market prediction, politi-
cal forecasting, social network analysis, social stream
mining, and human-robot interaction.

For example, Li et al. (Li et al. 2014) implemented a
generic stock price prediction framework and plugged
in six di↵erent models with di↵erent analyzing ap-
proaches. They used Harvard psychological dictionary
and Loughran-McDonald financial sentiment dictionary
to construct a sentiment space. Textual news articles
were then quantitatively measured and projected onto
such a sentiment space. The models’ prediction accu-
racy was evaluated on five years historical Hong Kong
Stock Exchange prices and news articles and their per-
formance was compared empirically at di↵erent market
classification levels.

Rill et al. (Rill et al. 2014) proposed a system de-
signed to detect emerging political topics in Twitter
sooner than other standard information channels. For
the analysis, authors collected about 4 million tweets
before and during the parliamentary election 2013 in
Germany, from April until September 2013. It was
found that new topics appearing in Twitter can be de-
tected right after their occurrence. Moreover, authors
compared their results to Google Trends, observing that
the topics emerged earlier in Twitter than in Google
Trends.

Jung and Segev (Jung and Segev 2014) analyzed
how communities change over time in the citation net-
work graph without additional external information
and based on node and link prediction and community
detection. The identified communities were classified
using key term labeling. Experiments showed that the
proposed methods can identify the changes in citation
communities multiple years in the future with perfor-
mance di↵ering according to the analyzed time span.

Montejo-Raez et al. (Montejo-Raez et al. 2014) intro-
duced an approach for sentiment analysis in social me-
dia environments. Similar to explicit semantic analysis,
microblog posts were indexed by a predefined collection
of documents. In the proposed approach, performed
by means of latent semantic analysis, these documents
were built up from common emotional expressions in
social streams.

Bell et al. (Bell et al. 2014) proposed a novel ap-
proach to social data analysis, exploring the use of mi-
croblogging to manage interaction between humans and
robots, and evaluating an architecture that extends the
use of social networks to connect humans and devices.
The approach used NLP techniques to extract features
of interest from textual data retrieved from a microblog-

ging platform in real-time and, hence, to generate ap-
propriate executable code for the robot. The simple
rule-based solution exploited some of the ‘natural’ con-
straints imposed by microblogging platforms to manage
the potential complexity of the interactions and to cre-
ate bi-directional communication.

Building A↵ectiveSpace 2

The best way to solve a problem is to already know a
solution for it. But, if we have to face a problem we
have never met before, we need to use our intuition.
Intuition can be explained as the process of making
analogies between the current problem and the ones
solved in the past to find a suitable solution. This kind
of thinking is maybe the essence of human intelligence
since in everyday life no two situations are ever the
same and we have to continuously perform analogical
reasoning for problem solving and decision making.

The human mind constructs intelligible meanings
by continuously compressing over vital relations (Fau-
connier and Turner 2003). The compression princi-
ples aim to transform di↵use and distended conceptual
structures to more focused versions so as to become
more congenial for human understanding. In order to
emulate such a process, principal component analysis
(PCA) was previously applied on the matrix represen-
tation of A↵ectNet (Cambria and Hussain 2012b), a se-
mantic network in which common-sense concepts were
linked to semantic and a↵ective features (Table 1). The
result was A↵ectiveSpace.

PCA is most widely used as a data-aware method
of dimensionality reduction (Jolli↵e 2005). PCA is
closely related to the low-rank approximation method,
singular value decomposition (SVD), in the sense that
PCA works on a transformed version of the data matrix
(Menon and Elkan 2011). SVD seeks to decompose the
A↵ectNet matrix A 2 Rn⇥d into three components,

A = USV T , (1)

where U and V are unitary matrices, and S is an rect-
angular diagonal matrix with nonnegative real numbers
on the diagonal.

Table 1: A snippet of the A↵ectNet matrix
A↵ectNet IsA-pet KindOf-food Arises-joy ...

dog 0.981 0 0.789 ...

cupcake 0 0.922 0.910 ...

songbird 0.672 0 0.862 ...

gift 0 0 0.899 ...

sandwich 0 0.853 0.768 ...

rotten fish 0 0.459 0 ...

win lottery 0 0 0.991 ...

bunny 0.611 0.892 0.594 ...

police man 0 0 0 ...

cat 0.913 0 0.699 ...

rattlesnake 0.432 0.235 0 ...

... ... ... ... ...



SVD has been proved to be optimal in preserving
any unitarily invariant norm1k · kM (Menon and Elkan
2011):

k A�Ak kM= min
rank(B)=k

k A� B kM, (2)

where Ak, i.e., A↵ectiveSpace, is formed by only con-
taining the top k singular values in S. Hence, in Af-
fectiveSpace, common-sense concepts and emotions are
represented by vectors of k coordinates. These coor-
dinates can be seen as describing concepts in terms of
‘eigenmoods’ that form the axes of A↵ectiveSpace, i.e.,
the basis e0,...,ek�1 of the vector space. For example,
the most significant eigenmood, e0, represents concepts
with positive a↵ective valence. That is, the larger a
concept’s component in the e0 direction is, the more af-
fectively positive it is likely to be. Concepts with neg-
ative e0 components, then, are likely to have negative
a↵ective valence.

Thus, by exploiting the information sharing property
of SVD, concepts with the same a↵ective valence are
likely to have similar features – that is, concepts con-
veying the same emotion tend to fall near each other
in A↵ectiveSpace. Concept similarity does not depend
on their absolute positions in the vector space, but
rather on the angle they make with the origin. For
example, concepts such as beautiful day, birthday
party, and make someone happy are found very close
in direction in the vector space, while concepts like feel
guilty, be laid off, and shed tear are found in a
completely di↵erent direction (nearly opposite with re-
spect to the centre of the space).

The problem with this kind of representation is that
it is not scalable: when the number of concepts and
of semantic features grows, the A↵ectNet matrix be-
comes too high-dimensional and too sparse for SVD to
be computed (Balduzzi 2013). Although there has been
a body of research on seeking for fast approximations
of the SVD, the approximate methods are at most ⇡ 5
times faster than the standard one (Menon and Elkan
2011), making it not attractive for real-world big data
applications.

It has been conjectured that there might be sim-
ple but powerful meta-algorithms underlying neuronal
learning (Lee et al. 2011). These meta-algorithms
should be fast, scalable, e↵ective, with few-to-no spe-
cific assumptions, and biologically plausible (Balduzzi
2013). Optimizing all the t 1015connections through
the last few million years’ evolution is very unlikely
(Balduzzi 2013). Alternatively, nature probably only
optimizes the global connectivity (mainly the white
matter), but leaves the other details to randomness
(Balduzzi 2013). In order to cope with the ever-
growing number of concepts and semantic features,
thus, we replace SVD with random projection (RP)
(Bingham and Mannila 2001), a data-oblivious method,

1
A norm k·kM is unitarily invariant if kUAV kM = kAkM

for all A and all unitary U, V.

to map the original high-dimensional data-set into a
much lower-dimensional subspace by using a Gaussian
N(0, 1) matrix, while preserving the pair-wise distances
with high probability. This theoretically solid and em-
pirically verified statement follows Johnson and Linden-
strauss’s (JL) Lemma (Balduzzi 2013). The JL Lemma
states that with high probability, for all pairs of points
x, y 2 X simultaneously,

r
m

d
k x� y k2 (1� ") k �x� �y k2 (3)


r

m

d
k x� y k2 (1 + "), (4)

where X is a set of vectors in Euclidean space, d is
the original dimension of this Euclidean space, m is
the dimension of the space we wish to reduce the data
points to, " is a tolerance parameter measuring to what
extent is the maximum allowed distortion rate of the
metric space, and � is a random matrix.

Structured random projection for making matrix
multiplication much faster was introduced in (Sarlos
2006). Achlioptas (Achlioptas 2003) proposed sparse
random projection to replace the Gaussian matrix with
i.i.d. entries in

�ji =
p
s

8
<

:

1 with prob. 1
2s

0 with prob.1� 1
s

�1 with prob. 1
2s

, (5)

where one can achieve a ⇥3 speedup by setting s = 3,
since only 1

3 of the data need to be processed. However,
since our input matrix is already too sparse, we avoid
using sparse random projection.

When the number of features is much larger than
the number of training samples (d � n), subsampled
randomized Hadamard transform (SRHT) is preferred,
as it behaves very much like Gaussian random matrices
but accelerates the process from O(nd) to O(n log d)
time (Lu et al. 2013). Following (Tropp 2011) (Lu et
al. 2013), for d = 2p where p is any positive integer, a
SRHT can be defined as:

� =

r
d

m
RHD (6)

where
• m is the number we want to subsample from d fea-

tures randomly.
• R is a random m⇥ d matrix. The rows of R are m

uniform samples (without replacement) from the stan-
dard basis of Rd.

• H2 Rd⇥d is a normalized Walsh-Hadamard matrix,

which is defined recursively: Hd =


Hd/2 Hd/2

Hd/2 Hd/2

�

with H2 =


+1 +1
+1 �1

�
.

• D is a d⇥ d diagonal matrix and the diagonal ele-
ments are i.i.d. Rademacher random variables.



Figure 1: A↵ectiveSpace 2

Our subsequent analysis only relies on the distances
and angles between pairs of vectors (i.e. the Euclidean
geometry information), and it is su�cient to set the
projected space to be logarithmic in the size of the data
(Ailon and Chazelle 2010) and apply SRHT. The result
is a new vector space model, A↵ectiveSpace 2 (Fig. 1),
which preserves the semantic and a↵ective relatedness
of common-sense concepts while being highly scalable.

Clustering A↵ectiveSpace 2

To reason on the disposition of concepts in A↵ectiveS-
pace 2, we use the Hourglass of Emotions (Fig. 2), an
a↵ective categorization model developed starting from
Plutchik’s studies on human emotions (Plutchik 2001).
In the model, sentiments are re-organized around four
independent dimensions whose di↵erent levels of acti-
vation make up the total emotional state of the mind.
The Hourglass of Emotions, in fact, is based on the
idea that the mind is made of di↵erent independent re-
sources and that emotional states result from turning
some set of these resources on and turning another set
of them o↵ (Minsky 2006).

In the model, a↵ective states are not classified, as of-
ten happens in the field of emotion analysis, into basic
emotional categories, but rather into four concomitant
but independent dimensions, characterized by six levels
of activation, which determine the intensity of the ex-
pressed/perceived emotion as a float 2 [-1,+1]. Such
levels are also labeled as a set of 24 basic emotions (six
for each of the a↵ective dimensions) in a way that allows
the model to specify the a↵ective information associated
with text both in a dimensional and in a discrete form.

Such basic emotions are used as initial centroids
in A↵ectiveSpace 2 for clustering the vector space by
means of sentic medoids (Cambria et al. 2011). Unlike
the k-means algorithm (which does not pose constraints
on centroids), sentic medoids do assume that centroids
must coincide with k observed points, which allows to

better cluster a vector space of common-sense knowl-
edge. The sentic medoids approach is similar to the
partitioning around medoids (PAM) algorithm, which
determines a medoid for each cluster selecting the most
centrally located centroid within that cluster. Unlike
other PAM techniques, however, the sentic medoids al-
gorithm runs similarly to k-means and, hence, requires
a significantly reduced computational time. Generally,
the initialization of clusters for clustering algorithms is
a problematic task as the process often risks getting
trapped in local optimum points, depending on the ini-
tial choice of centroids.

For this study, however, the set of 24 basic emotions
of the Hourglass model are used as initial centroids. For
this reason, what is usually seen as a limitation of the
algorithm can be seen as advantage for this study, since
what is being sought is not the k centroids leading to
the best k clusters, but indeed the k centroids identify-
ing the emotions we are interested in. Therefore, given
that the distance between two points in the space is de-

fined as D(ei, ej) =

r
Pd0

s=1

⇣
e
(s)
i � e

(s)
j

⌘2
, the adopted

algorithm can be summarized as follows:

1. Each centroid ēi 2 Rd0
(i = 1, 2, ..., k) is set as one of

the 24 basic emotions of the Hourglass model;

2. Assign each instance ej to a cluster ēi if D(ej , ēi) 
D(ej , ēi0) where i(i0) = 1, 2, ..., k;

3. Find a new centroid ēi for each cluster c so thatP
j2Cluster c D(ej , ēi) 

P
j2Cluster c D(ej , ēi0);

4. Repeat step 2 and 3 until no changes on centroids are
observed.

Experimental Results

In order to evaluate the new analogical reasoning model,
a comparison between A↵ectiveSpace and A↵ectiveS-
pace 2 has been performed both over a benchmark for
a↵ective common-sense knowledge (BACK) (Cambria
and Hussain 2012b), for directly testing the a↵ective
analogical reasoning capabilities of the two models, and
over a dataset of natural language opinions, for com-
paring how the two di↵erent configurations of A↵ec-
tiveSpace (SVD-built versus RP-built) perform within
the more practical task of concept-level opinion min-
ing. Both vector space models were built upon the new
50k⇥120k A↵ectNet matrix.

Mood-Tag Evaluation

We compared A↵ectiveSpace and A↵ectiveSpace 2 on
BACK, a benchmark for a↵ective common-sense knowl-
edge built by applying concept frequency - inverse opin-
ion frequency (CF-IOF) (Cambria et al. 2010) on a
5,000-blogpost database extracted from LiveJournal2,
a virtual community of users who keep a blog, journal,
or diary.

2
http://livejournal.com



An interesting feature of this website is that bloggers
are allowed to label their posts with both a category
and a mood tag, by choosing from predefined categories
and mood themes or by creating new ones. Since the
indication of mood tags is optional, posts are likely to
reflect the true mood of the authors.

CF-IOF weighting was exploited to filter out common
concepts in the LiveJournal corpus and detect relevant
mood-dependent semantics for each of the Hourglass
sentic levels. The result was a benchmark of 2,000 a↵ec-
tive concepts that were screened by 21 English-speaking
students who were asked to evaluate the level b associ-
ated to each concept b 2 ⇥ = {✓ 2 Z | �1  ✓  1} for
each of the four a↵ective dimensions. BACK’s concepts
were compared with the classification results obtained
by applying A↵ectiveSpace and A↵ectiveSpace 2, show-
ing a consistent boost in classification performance (Ta-
ble 2).

Sentic Computing Engine

The sentic computing engine (Cambria and Hussain
2012b) consists of four main components: a pre-
processing module, which performs a first skim of text;
a semantic parser, to deconstruct text into concepts;
the IsaCore module, for aspect extraction; and the Af-
fectiveSpace module, for polarity detection (Fig. 3).

Although similar in their structure, the last two mod-
ules are intrinsically di↵erent for the kind of knowledge
they leverage on and for the task they fulfill. IsaCore
(Cambria et al. 2014) is a semantic network of common
knowledge (vocabulary knowledge collected from the
Web), which focuses on the IsA relationship (e.g., Pablo
Picasso-IsA-artist). A↵ectiveSpace is a vector space
of a↵ective common-sense knowledge (trivial knowledge
that would not normally be found on the Web) leverag-
ing on multiple relationships (e.g., LocatedAt, IsUsed-
For, Arises, etc.). Hence, while the former exploits se-
mantics to perform the task of aspect extraction, the
latter uses sentics (i.e., a↵ective information) to infer
the polarity of natural language concepts.

Hourglass
Interval

Sentic
Level

A↵Space
Accuracy

A↵Space 2
Accuracy

[G(1),G(2/3))

ecstasy 77.3% 84.5%

[G(2/3),

G(1/3))

joy 83.9% 90.1%

[G(1/3),G(0))

serenity 68.8% 76.3%

(G(0),

–G(1/3)]

pensive-

ness

74.5% 79.0%

(–G(1/3),

–G(2/3)]

sadness 81.2% 89.6%

(–G(2/3),

–G(1)]

grief 79.5% 87.4%

Table 2: Comparative evaluation of A↵ectiveSpace and
A↵ectiveSpace 2 over the classification of Pleasantness
sentic levels.

Figure 2: The Hourglass model

The engine does not aim to deeply understand nat-
ural language text, but rather to simply infer the de-
notative and connotative information associated with
relevant concepts. In order to infer the polarity of a sen-
tence, in fact, the sentic computing engine only needs
to extract the features or aspects of the discussed ser-
vice or product, e.g., size or weight of a phone, and the
sentiments associated with each of these, e.g., positive
or negative, so that the output of a sentence such as “I
love the phone’s touchscreen but its battery life is too
short” would be something like <touchscreen:+> and
<battery: –>.

The pre-processing module firstly exploits linguis-
tic dictionaries to interpret all the a↵ective valence
indicators usually contained in opinionated text, e.g.,
special punctuation, complete upper-case words, cross-
linguistic onomatopoeias, exclamation words, degree
adverbs, and emoticons. Secondly, the module detects
negation and spreads it in a way that it can be accord-
ingly associated to concepts during the parsing phase.
Such task is not trivial as not all appearances of explicit
negation terms reverse the polarity of the enclosing sen-
tence and that negation can often be expressed in rather
subtle ways. Lastly, the module converts text to lower-
case and, after lemmatizing it, splits the opinion into
single clauses according to grammatical conjunctions.



Figure 3: Block diagram of the sentic computing engine

For parsing text, the sentic parser is exploited for
identifying concepts without requiring time-consuming
phrase structure analysis. The parser uses knowledge
about the lexical items found in text to choose the best
possible construction for each span of text. Specifi-
cally, it looks each lexical item up in A↵ectNet and
IsaCore, obtaining information about the basic cate-
gory membership of that word. It then e�ciently com-
pares these potential memberships with the categories
specified for each construction in the corpus, finding
the best matches so that, for example, a concept like
buy christmas present can be extracted from sen-
tences such as “today I bought a lot of very nice Christ-
mas gifts”. Additionally, the sentic parser provides, for
each retrieved concept, its relative frequency, valence,
and status, i.e., the concept’s occurrence in the text,
its positive or negative connotation, and the degree of
intensity with which the concept is expressed, respec-
tively.

For each clause, the module outputs a small bag of
concepts (SBoC), which is later on analyzed separately
by the IsaCore and A↵ectiveSpace modules. While the
former exploits the graph representation of the common
and common-sense knowledge base to detect semantics,
the latter exploits the vector space representation of Af-
fectNet to infer sentics. In particular, the IsaCore mod-
ule applies spectral association for assigning activation
to key nodes of the semantic network, which are used
as seeds or centroids for classification. Such seeds can
simply be the concepts corresponding to the class labels
of interest or can be found by applying CF-IOF on a
training corpus.

After seed concepts are identified, the module spreads
their values across the IsaCore graph. This operation,
an approximation of many steps of spreading activation,
transfers the most activation to concepts that are con-
nected to the seed concepts by short paths or many
di↵erent paths in a↵ective common-sense knowledge.
Therefore, the concepts of each SBoC provided by the
sentic parser are projected on the matrix resulting from
spectral association in order to calculate their seman-

tic relatedness to each seed concept and, hence, their
degree of belonging to each di↵erent class. Such classi-
fication measure is directly proportional to the degree
of connectivity between the nodes representing the re-
trieved concepts and the seed concepts in the IsaCore
graph. The concepts retrieved by the sentic parser are
also given as input to the A↵ectiveSpace module, which,
in turn, exploits dimensionality reduction to infer the
a↵ective information associated with them. To this end,
the concepts of each SBoC are projected into A↵ec-
tiveSpace and, according to their position in the vector
space, they are assigned to an a↵ective class specified by
the Hourglass model. In order to test the performance
of the proposed model, such an operation is performed
both with the SVD-built A↵ectiveSpace and with Af-
fectiveSpace 2.

These are embedded in the sentic computing engine
and evaluated against a dataset obtained from Patien-
tOpinion3, a social enterprise pioneering an online feed-
back service for users of the UK national health service.
It is a manually tagged dataset of 2,000 patient opinions
that associates to each post a category (namely, clinical
service, communication, food, parking, sta↵, and time-
liness) and a positive or negative polarity.

The dataset is hereby used to test the combined de-
tection of opinion targets and the polarity associated
with these. Results show that A↵ectiveSpace 2 gen-
erally outperforms standard A↵ectiveSpace, especially
for categories where polarity is more di�cult to detect
in which a↵ect is usually conveyed more implicitly, e.g.,
‘communication’ and ‘timeliness’ (Table 3).

A↵Space
Accuracy

A↵Space 2
Accuracy

clinical service 75.2% 80.8%

communication 74.5% 85.1%

food 82.0% 83.7%

parking 74.0% 74.0%

sta↵ 81.1% 83.2%

timeliness 73.4% 84.6%

Table 3: F-measure values relative to PatientOpinion
evaluation.

Conclusion

In a world in which millions of people express their
opinions about commercial products and services every-
where on the Web, the distillation of knowledge from
this huge amount of unstructured information is a key
factor for tasks such as social media marketing, product
positioning, and financial market prediction.

Common-sense reasoning is a good solution to the
problem of concept-level sentiment analysis but scal-
ability is a major factor in jeopardizing the e�ciency
of analogical reasoning in a multi-dimensional vector
space of concepts.

3
http://patientopinion.org.uk



In this work, we presented A↵ectiveSpace 2, a lan-
guage visualization and analysis system that allows for
reasoning by analogy on natural language concepts,
even when these are represented by highly dimensional
semantic features.

In this sense, A↵ectiveSpace 2 can be seen as a pow-
erful tool for tackling the emerging issue of “Big Dimen-
sionality” in the context of NLP, but also as a general
framework for analogical reasoning that can be embed-
ded in potentially any cognitive system dealing with
real-world semantics.
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