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A B S T R A C T

Commonsense knowledge acquisition and representation is a core topic in artificial intelligence
(AI), which is crucial for building more sophisticated and human-like AI systems. However,
existing commonsense knowledge bases organize facts in an isolated manner like bag of facts,
lacking the cognitive-level connections that humans possess. Humans possess the ability to e�-
ciently organize vast amounts of knowledge. On the one hand, individuals summarize concrete
entities into concepts based on observations to express their commonalities. On the other hand,
they establish connections between concepts and engage in reasoning based on these connec-
tions, and maintain a small core set of primitives to build cognitive blocks. This is indicated as
the conceptual primitives theory, which reveals that humans organize knowledge by establishing
a set of primitives and designing reasoning strategies based on them. Inspired by this theory, in
this work, we design a new commonsense knowledge base named PrimeNet. It is constructed in
a three-layer structure, i.e., primitive, concept, and entity. It is constructed by comprising a small
core of primitives, linked to a much more extensive base of factual knowledge instances. First,
we collect commonsense knowledge and employ a gradual expansion strategy for knowledge
integration. After refinement, PrimeNet contains 6 million edges between 2 million nodes, with
34 di�erent types of relations. Then, we design a new conceptualization method by leveraging
a probabilistic taxonomy, to build the concept layer of PrimeNet. Finally, we conduct primi-
tive detection to build the primitive layer, where a lexical substitution task is used to identify
related concepts, and large language models are employed to generate a rational primitive to
label each concept cluster as well as verify the primitive detection process. To verify the use-
fulness of PrimeNet, we utilize the knowledge in PrimeNet to improve the model performance
on two downstream tasks, i.e., semantic similarity and neuro-symbolic commonsense question
answering. All the data, codes, APIs, and tools that are used to leverage PrimeNet are available
at https://github.com/senticnet/primenet.

1. Introduction
Commonsense knowledge refers to the information about everyday life that humans are expected to know, such

as painters use pencils and animals don’t drive cars. This kind of knowledge is usually taken for granted in human
communication and reasoning, even though it may not be explicitly stated [1]. However, machines lack access to
this innate commonsense knowledge, which often results in their inferior performance in simple reasoning tasks. As
mentioned by Oren Etzioni, commonsense is "the dark matter" of AI: it shapes so much of what we do and what we
need to do, and yet it’s ine�able. To address this limitation, researchers have dedicated significant e�ort to construct
diverse commonsense knowledge bases like Cyc [2], FrameNet [3], ConceptNet [4], TransOMCS [5], ATOMIC [6, 7],
CSKG [8], and VoCSK [9]. These knowledge bases are compiled from diverse sources (e.g., encyclopedias, crowd-
sourcing, and expert annotations), aiming to empower machines with access to commonsense knowledge and enhance
the reasoning abilities of AI systems. Despite advancements in existing knowledge bases, the reasoning capabilities
of AI systems remain unsatisfactory. One notable limitation is that current knowledge bases often organize facts in a
manner resembling a "millions of facts", lacking the cognitive-level connections inherent in human understanding.
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description  claw hammer can be used to drive nails into wood
✓ hammer can used to drive nails into wood
 tool can be used to drive nails into wood

Figure 1: Example of the description of commonsense knowledge with concepts (e.g., hammer, nail, and wood), instead
of specific entities (e.g., claw_hammer) or abstract primitives (e.g., tool).
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Figure 2: Illustration of three-layer structure in PrimeNet. Given the factual knowledge, a concept layer is generated as the
basic level, comprising widely recognized mental representations associated with various categories or classes of objects.
Its subordinate layer is termed as entity layer, which consists of specific entities, and its superordinate layer is defined as
primitive level, encapsulating overarching and fundamental primitives.

Humans, on the other hand, exhibit the ability to e�ciently organize extensive amounts of knowledge. This ca-
pability goes beyond mere accumulation of facts and involves the intricate weaving of cognitive-level connections,
enabling a deeper and more nuanced comprehension of the information at hand. We have two observations for human-
like knowledge organization. First, individuals are able to function well in most real-world situations using a much
smaller set of concepts, as opposed to dealing with an exhaustive list of specific entities. For example, humans gener-
ally describe commonsense knowledge like hammer can be used to drive nails into wood, as illustrated in Fig. 1. In this
example, the more general concepts such as hammer, nail, and wood are used for the description, rather than getting
into overly specific terms like engineering hammer or rubber hammer. From estimates of e�ective vocabulary, the
number of words that people need in order to understand 95% of everyday texts is around 3000 words, and the average
size of American freshman college students’ vocabulary has been estimated at about 12,000 words [10]. This un-
derscores the human ability to distill extensive information into manageable concepts, facilitating a more streamlined
expression and understanding of daily experiences.

Second, in the cognitive level, human cognition relies on a small set of fundamental and innate building blocks
called primitives. In the conceptual primitive theory, the primitives serve as elemental units of information and actions,
like color, shape, size, increase, and decrease, and forms the foundation for humans to make generalizations,
inferences, and predictions, ultimately facilitating e�cient reasoning and understanding in a wide range of real-world
situations. For example, we generalize concepts with relevant higher-level primitives. Verb concepts such as eat,
slurp, and munch could be related to a primitive EAT. Noun concepts like pasta, bread, and milk can be associated with
the primitive FOOD. Therefore, eat pasta or slurp milk can be generalized into a primitive-level description, i.e., EAT
FOOD. Hierarchical concept representations have significant applications in diverse domains, e.g., conceptual metaphor
understanding [11, 12] and cognitive analysis [13].

In history, some e�orts have been devoted to building knowledge bases more in line with human cognition. For
example, VoCSK [9] is designed to exploit concept-level knowledge representation for implicit verb-oriented com-
monsense knowledge (e.g., person eats food instead of John eats bread). SenticNet [14] is developed for organizing
sentiment knowledge with a core set of primitives. ASER [15] (short for Activities, States, Events, and their Relations)
is built to extend the traditional definition of selectional preference to higher-order selectional preference over eventu-
alities. These methods share a common goal of conceptualizing diverse types of commonsense knowledge, mapping
them to higher-level cognition, and moving beyond the explicit representation of knowledge as discrete facts. Fol-
lowing this line, we take a further step by constructing a new framework for representing the intricate commonsense
knowledge based on the conceptual primitive theory.
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Table 1
Examples of verb primitives in PrimeNet. Given the input string, we illustrate the detected verb primitives, and its
primitive-level representation and explanation. Primitives are marked in green.

Input String Verb Primitives Primitive-level Representation and Explanation

turn off light turn off → DEACTIVATE DEACTIVATE(light) light.STATE=ON → light.STATE = OFF
add salary add → INCREASE INCREASE(salary) salary → salary++
cut budget cut → DECREASE DECREASE(budget) budget → budget**
drive car drive → ACCELERATE ACCELERATE(car) INCREASE(car.SPEED) := car.SPEED++
build house build → GENERATE GENERATE(house) » house →« house
butcher chickens butcher → KILL KILL(chicken) TERMINATE(LIFE(chicken))
revise the manuscript revise →FIX Fix(manuscript) manuscript.STATE=BAD → manuscript.STATE=GOOD

illuminate the idea illuminate →SIMPLIFY SIMPLIFY(idea) idea.STATE=DIFFICULT → idea.STATE=EASY

In this work, we propose a new framework for commonsense knowledge representation and reasoning based on
conceptual primitives, named PrimeNet. By mimicking the way human organizing knowledge, we design a new frame-
work which consists of three layers, as illustrated in Fig. 2:

• Primitive: The primitive layer comprises fundamental and universal elements that act as the building blocks of
cognition. These primitives form the foundation upon which the entire knowledge representation is constructed.
Examples of basic primitives include color, shape, size, object, tool, increase, decrease, and others.
These primitives are essential for understanding and reasoning about the world.

• Concept: The concept layer is commonly used mental representations of categories or classes of objects, ideas,
or events that share common features or characteristics. For example, concepts like hammer and nail fall into
this layer. They allow for e�cient information organization and grouping based on shared attributes.

• Entity: The entity layer represents specific instances or examples of concepts. For example, given the concept
hammer, specific entities include brick_hammer, rubber_hammer, and engineer_hammer. This layer enables a
more specific representation of knowledge, capturing individual objects or instances in the real world.

PrimeNet is built upon the three-layer structure to systematically organize commonsense knowledge. We begin by
gathering extensive commonsense knowledge from diverse sources and integrate it to form a graph. Unlike a simple
aggregation of facts, we adopt a gradual expansion approach. Initially, we construct the graph with core concepts and
relation types, systematically expanding it by adding more specific entities and incorporating diverse relation types. In
the next stage, we establish the conceptual layer of PrimeNet, by assessing the abstractness of all nodes using a new
scoring function tailored for conceptualization. We leverage the probabilistic taxonomy Probase [16] to identify the
abstract concepts, and our scoring method centers around core words rather than the peripheral leaves [9, 17]. Then,
we perform primitive detection on the concepts to build the primitive layer of PrimeNet. Formulating a thorough
primitive set demands considerable time and e�ort. To address this, we design a lexical substitution task to discover
the set of primitives. This is grounded in the assumption that within a shared context, the associated concepts under a
primitive can be seamlessly interchanged, resulting in grammatically accurate sentences upon substitution. To allocate
a representative primitive to each concept cluster, we leverage large language models (LLMs) to generate the primitive
and employ an LLM-based verifier to validate the assignment of the primitive to concepts. Moreover, we manually
check the primitives, refine the hierarchy structure of the primitives, and generate the explanation of primitives. For
example, DEACTIVATE is defined as change the status from on to o�, i.e., STATE=ON ô STATE=OFF. In Table. 1, we
present several cases of verb primitives used in PrimeNet. This strategy of constructing a primitive layer balances the
need for human hand-coding for accuracy with that for crowd-sourcing and machine-based knowledge extraction for
coverage.

The contribution of this work is summarized as follows.
1. Representation of commonsense knowledge based on conceptual primitives. We propose a multi-layer com-

monsense knowledge base based on conceptual primitives under the hypothesize that commonsense reasoning
could depend on a concise core of concepts. To our best knowledge, this is the first work incorporating the
idea of conceptual primitives into a general-purpose commonsense knowledge base to provide a generalizable,
e�ective representation of commonsense knowledge for AI tasks.
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2. Construction of a new commonsense knowledge base PrimeNet. Based on the designed multi-layer structure,
we construct a brand new commonsense knowledge base. We first collect commonsense knowledge from various
sources and perform knowledge integration to build a knowledge graph.

3. Conceptualization for PrimeNet. We design a new scoring method to measure the abstractness of a term
for conceptualization, according to the conditional probability and connections to core words. Compared with
previous methods, our method centers around core words rather than the peripheral leaves, which is e�ective in
measuring the abstractness of concepts.

4. Primitive Detection for PrimeNet. We design a new primitive detection method to build the primitive layer.
We employ a lexical substitution task to discover related concepts under the assumption that they share a similar
context. For the clusters of related concepts, we leverage LLMs to label their primitives and verify the detection
process.

The rest of the paper is organized as follows: Section 2 introduces conceptual primitive theory and the challenges
of building commonsense knowledge bases; Section 4 details the construction of the graph of PrimeNet; Section 5
introduces the conceptualization for building the concept layer of PrimeNet; Section 6 introduces the primitive detec-
tion to build the primitive layer of PrimeNet; Section 7 reports experiments; Section 8 surveys existing commonsense
knowledge bases, briefly introduces their features, and describes conceptual primitives to provide a motivation behind
the utilization of such an approach for PrimeNet; finally, Section 9 provides concluding remarks.

2. Background
2.1. Theory of Conceptual Primitive

In linguistics and cognitive science, conceptual primitive commonly refers to a basic, irreducible concept or idea
that serves as a foundation for understanding more complex concepts. Conceptual primitives are fundamental elements
that are not further defined in terms of other concepts but are instead used to define other, more complex ideas. They
are often considered to be the building blocks of thought and language. The exploration of conceptual primitives has
a rich history within linguistics. In the 1950s, Chomsky [18] introduced the universal grammar theory, positing innate
linguistic structures as foundational conceptual primitives. According to this theory, humans inherently possess the ca-
pacity to acquire language, with universal linguistic structures serving as fundamental building blocks shared across all
languages. The conceptual dependency theory, put forth by Schank [19], suggested that the basis of natural language is
conceptual, forming an interlingual foundation composed of shared concepts and relationships across languages. Jack-
endo� [20] delved into explanatory semantic representation, asserting the existence of semantic primitives common to
all languages, enabling humans to express a diverse range of semantic information. Wierzbicka [21] emphasized that
"conceptual primitives and semantic universals are the cornerstones of a semantic theory", asserting that this limited
set of primitives can determine interpretations for all lexical and grammatical meanings in natural language. These
theories collectively aim to identify a core set of fundamental primitives for language, facilitating the description of
lexicalized concepts.

In the realm of cognitive science, theoretical studies on commonsense knowledge representation align with similar
insights. Jackendo� et al. [22] highlighted a strong correlation between semantic primitives and cognitive representa-
tion. According to Pesina and Solonchak [23], the primitives studied in linguistics form the basis for the formation of
a person’s conceptual system, which is both unique and universal in many aspects. In this view, language emerges as
a central tool for cognitive functions, including conceptualization and categorization. In the development of knowl-
edge representation theories in cognitive science, many have been based on the idea that humans possess a core set of
knowledge connecting a vast array of specific knowledge. In the early stages, Minsky [24] studied the framework for
knowledge representation and introduced the concept of "frames" as a structured way to organize information about
situations or objects. He proposed that humans when encountering new situations, retrieve typical knowledge from
their minds. Piaget et al. [25] introduced the term "schema", representing both the category of knowledge and the
process of acquiring that knowledge. The knowledge representation based on schema has also been further researched
by Rumelhart and Ortony [26], Winograd [27], Bobrow and Norman [28], Johnson [29] and others. Spelke and Kinzler
[30] introduced the core knowledge theory, suggesting that infants are born with "core knowledge systems" supporting
basic intuitions about the world. West [31] introduced a data modeling structure divided into primitive and derived
concepts, with primitive concepts serving as building blocks for other concepts. These theories collectively under-
score that the core primitive set constitutes the fundamental structure of human cognition and provides guidance for
knowledge representation.
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2.2. Challenge
In modern large-scale commonsense knowledge bases, there have been relatively few attempts to build a knowledge

base in a way incorporating core primitives based on the conceptual primitive theory and linking a vast amount of facts.
Cambria et al. [14] has developed a sentiment analysis system based on primitives such as DECREASE and INCREASE.
Wachowiak and Gromann [32] proposed to build on large multilingual pre-trained language models and a small dataset
of examples from image schema literature to train a supervised classifier that classifies natural language expressions
of varying lengths into image schemas. Liu et al. [9] designed conceptualization for verbs and built a knowledge base
with conceptual verb-oriented knowledge to represent various instances, e.g., "John eat apple" and "Helen eat bread"
are represented as "people eat food".

The primary challenge hindering progress in this field stems from the complexity of constructing a comprehensive
set of core primitives to encompass extensive knowledge across diverse domains. On the one hand, managing large-
scale factual data makes manual editing and maintenance of a core primitive set impractical. While it is possible
to manually craft a small, high-quality core primitive set, this approach becomes intricate when using primitives to
interpret other specific concepts, and its coverage of specific knowledge is limited. On the other hand, primitives are
not fixed but rather flexible and adaptable. The core primitives are deeply embedded in the human conceptual system,
which is both unique and universal in many aspects. The proposed number of semantic primitives varies significantly,
ranging from a few units in some studies [21, 22] to several dozens [21] or even hundreds [14] in others. Pesina
and Solonchak [23] stated that the main concepts of human society remain relatively stable, but their overall volume
changes over time.

3. Framework
In this section, we first introduce the task definition. Then, we introduce the solution of constructing PrimeNet and

the key ideas of each module.

3.1. Task Definition
PrimeNet is a hybrid graph H combining a traditional graph G where each edge is built among nodes to represent

commonsense knowledge in triplets, and a hypergraph G
< where each edge is built over the nodes to linked their

concepts and primitives. For example, in the graph G, its edge is represented as a triplet like (corgi, isA, dog), where
dog and corgi are nodes, and isA is a relation type. In the hypergraph G

<, corgi is linked to dog in the concept layer,
and dog is linked to ANIMAL in the primitive layer. We devise the formal definition of PrimeNet as below.

Definition 1 (PrimeNet). PrimeNet is a hybrid graph H of a knowledge graph G and a hypergraph G
<. The knowledge

graph is denoted as G = {V,E,R} where V is a node set, E is an edge set connecting pairs of nodes, and R is the set
of distinct relation types associated with the edges in E. Each node v À V is a term. Each edge e À E is a triplet
(vi, r, vj) where vi and vj are the connected nodes, and r À R is the relation type. The hypergraph is denoted as
G
< = {V,C,P,M}, where V represents the set of entities, C represents the set of concepts, and P represents the set of

primitives. The hyperedge set M = {Mvôc ,Mcôp} contains two types of hyperedges. The hyperedge (v, c) À Mvôc

links the entity v À V to its concept c À C, and the hyperedge (c, p) À Mcôp links the concept c À C to its primitive
p À C. Overall, we have the PrimeNet H = {V,E,R,C,P,M}.

3.2. PrimeNet Construction
The solution of PrimeNet mainly consists of three modules. The first is to construct the knowledge graph G to

organize the large-scale commonsense knowledge. The second is a conceptualization module to identify the concept
set C and build the hyperedges Mvôc to link entities to concepts. The third is a primitive detection module to build
the core primitive set P, and build the hyperedges Mcôp to link the concepts to their primitives.

Module-1: Knowledge Graph Construction. Over the course of many years, a vast reservoir of factual knowledge
has accumulated, taking on various forms and originating from diverse sources. In order to systematically organize
this wealth of knowledge, we have undertaken the construction of a knowledge graph. Drawing inspiration from the
theory of cognitive development put forth by Piaget et al. [25], which posits that human cognitive development occurs
in stages, we have adopted a gradual expansion strategy to build our knowledge repository. Rather than merging
disparate sources abruptly, our approach is to delicately expand the knowledge base.
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The fundamental idea underlying our strategy is that human knowledge acquisition follows a pattern of continuous
expansion, rooted in commonly shared and widely accepted information. To illustrate, individuals typically begin by
learning that a "hammer" is a "tool" used for driving "nails," and subsequently delve into more intricate details, such
as discerning the di�erences among various types of hammers, such as the "engineer hammer" or "brick hammer". To
emulate this cognitive process, we initially construct a basic graph consisting of widely used concepts and relations.
Subsequently, we systematically enlarge the graph by incorporating a multitude of facts from diverse sources. This
method allows for the gradual incorporation of information, mirroring the incremental nature of human knowledge
acquisition. We detail this module in Section 4.

Module-2: Concept Detection. To construct the concept layer over the knowledge graph G, this module focuses on
identifying a suitable concept set C from the node setV and establishing hyperedges in the setMvôc to link entities with
their respective concepts. Within PrimeNet, this concept layer encapsulates commonly used mental representations
of categories, classes, or ideas that share common features or characteristics. Consequently, we initialize the concept
set layer using Core WordNet1, a compilation of approximately 5000 of the most commonly used words meticulously
curated by experts. Then, we design a concept detection method to discover new concepts and expand the concept set,
leveraging a large-scale probabilistic taxonomy, i.e., Probase [16], and build the edges to link entities to the detected
concepts.

Specifically, Probase encompasses 33.4 million isA triples between 2.7 million concepts, automatically extracted
from 1.68 billion web pages, with each triplet associated with a frequency score. Our observation underscores that,
for a concept, its hyponyms tend to establish robust connections with diverse concepts in a probabilistic taxonomy,
whereas a specific entity is more concentrated in its connection to concepts. To capture this regularity, we introduce a
novel scoring function designed to identify whether a term qualifies as a concept. In contrast to alternative conceptu-
alization methods, our approach stands out by centering around core words rather than initiating from the leaves of an
extensive taxonomy for concept detection. The pre-defined core words enhance diversity and accuracy, distinguishing
our strategy as e�ective in steering clear of misleading information stemming from isolated graphs or incorrect circles
within the large-scale taxonomy.

Module-3: Primitive Discovery. This module is dedicated to constructing the primitive layer of PrimeNet, involv-
ing the establishment of a core primitive set P and the creation of the hyperedge set Mcôp to connect concepts with
their higher-level primitives. For instance, the primitive INCREASE is associated with concepts like ramp up, go up,
broaden, step up, elevate, supplement, redouble, pile up, upward spiral, distend, and more. The manual definition
of the primitive set and linking of primitives to their lower-level concepts is impractical. In our approach, an auto-
mated method is designed, utilizing concept clustering and subsequent labeling of their primitives using large language
models, followed by error checking to refine both the primitives and concept clusters.

Specifically, it is observed that concepts under the same primitive often share a similar meaning and context. For
instance, elongate and stretch fall under the same primitive GROW and share a similar context. Although intuitive, lexical
substitution tends to overlook crucial di�erences between concepts. For example, verbs such as stretch and compress
belong to opposite primitives, GROW and SHRINK respectively, yet can be identified within similar lexical contexts.
To address this issue, we leverage powerful LLMs to filter out incorrect concepts within each cluster, generating a
primitive that accurately describes the concept cluster. Manual checks are also employed to ensure the quality of
primitives in building the primitive layer. This strategy strikes a balance between human hand-coding for accuracy
and crowd-sourcing and machine-based knowledge extraction for comprehensive coverage.

4. Knowledge Graph Construction
In this section, we detail the construction of the knowledge graph (G) of PrimeNet. It mainly contains four stages.

First, commonsense knowledge acquisition is to collect high-quality knowledge from diverse sources which are created
through manually annotated or crowd-sourcing. Then, knowledge integration is to map the nodes and relations among
di�erent sources. Next, the graph construction is to organize the knowledge in a graph. Finally, exploration is to define
functions to leverage the knowledge graph in the downstream tasks. We detail each stage as follows.

1Please find more details from https://wordnet.princeton.edu/. Core WordNet is available in https://wordnetcode.princeton.
edu/glosstag.shtml.
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Table 2
Sources of commonsense knowledge for building the knowledge graph of PrimeNet. Creation denotes the construction
methods, Relations denotes the number of relation types, and Size denotes the graph scale.

Source Creation # Relation Types Size Example

WordNet manual 10 155K words, 176K synsets (denied, morphy, deny)
FrameNet manual 10 1.2K frames, 12K roles, 1.9K edges (Criminal_process, Subframe, Arrest)
Roget manual 2 72k words, 1.4M edges (explore, Synonym, investigate)
ConceptNet crowd-sourcing 34 8M nodes, 21M edges (keyboard, part of, computer)
Wikidata crowd-sourcing 6.7K 75M objects, 900M edges (George Washington, isInstanceOf, human)
DBpedia crowd-sourcing 53.1K 4.8M nodes, 62M edges (Applied_Artificial_Intelligence, discipline,

Artificial_intelligence)
ATOMIC crowd-sourcing 9 300K nodes, 877K edges (PersonX bakes bread, Before X needed to,

buy the ingredients)
Visual Genome crowd-sourcing 42.4K 3.8M nodes, 2.3M edges, 2.8M attributes (man, sit on, bench)

4.1. Commonsense Knowledge Acquisition
In constructing a commonsense knowledge base, the acquisition of knowledge stands out as a pivotal initial phase.

Collecting commonsense knowledge is a challenging task due to its sheer volume, implicit nature, and diverse forms
of expression. With decades of human e�orts, a wealth of commonsense knowledge has been amassed and stored in
various knowledge bases. To ensure quality, in this work, we extract knowledge from expert-crafted databases and
crowd-sourced repositories, as summarized in Table 2, including:

• Lexical knowledge extracted from WordNet [33], FrameNet [3], and Roget [34].

• Factual knowledge extracted from ConceptNet2 [4], which is a commonsense knowledge that represents general
knowledge and commonsense relationships between concepts.

• Structured information in Wikidata and DBpedia. For DBpedia3 [35], we extract knowledge from InfoBoxes
which provide information about a wide variety of topics, e.g., people, places, and organizations, as well as
knowledge from InstanceTypes which contains instances of 438 types, e.g., book, company, city, and plant.

• Task-specific knowledge, such as inferential knowledge extracted from ATOMIC [6, 7] which is organized as
typed "if-then" relations with variables, and visual knowledge extracted from Visual Genome [36].

4.2. Knowledge Integration
In commonsense knowledge graph construction, multiple sources can provide complementary knowledge of dif-

ferent types. However, the integration of knowledge from diverse sources is impeded by the varying representation
formats. It is noted that many databases provide mappings to other databases, e.g., ConceptNet contains mappings
to DBpedia, WordNet, Wikidata, and FrameNet. Yet, these mappings may be incomplete. Recent research endeav-
ors to create high-quality mappings among di�erent knowledge bases, o�ering a pathway for knowledge integration.
For example, CommonSense Knowledge Graph (CSKG) [8] construct mappings across seven knowledge bases (i.e.,
ATOMIC, ConceptNet, FrameNet, Roget, Visual Genome, Wikidata, and WordNet). We conduct knowledge integra-
tion to build a knowledge graph of PrimeNet using these high-quality mappings, as well as lexical-level and semantic-
level matching methods. Table 3 summarizes the details of our integration process.

First, we process the individual sources. More specifically, we keep the initial sets of nodes, edges, and relations in
ConceptNet and ATOMIC. For other sources, we extract their nodes and edges and convert their relations to the format
of relations in ConceptNet, as detailed in Table 3. Then, we conduct mappings between sources for node resolution.
On the one hand, we leverage mappings released by Ilievski et al. [8]4 to map nodes from di�erent sources. On the
other hand, we represent each node using its label and use exact lexical matching to establish the mappings of nodes
from di�erent sources. Moreover, we conduct semantic-level matching to identify the same nodes with di�erent labels.

2We use the ConceptNet version 5.7.0, which is available at https://github.com/commonsense/conceptnet5/wiki/Downloads.
3We use the DBpedia version 2022.09.01, which is available at https://www.dbpedia.org/resources/.
4The project description and mappings are available on https://github.com/usc-isi-i2/cskg. Please refer to Ilievski et al. [8] for more

details on processing individual sources, performing node resolution, and constructing mappings.
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Table 3
Details of knowledge integration for individual sources and mapping between sources. Relation types are in italics. *
denotes the processed nodes, edges, or mappings released by Ilievski et al. [8].

Step 1. Individual Sources
ConceptNet Initial nodes and edges are used, and 34 relations are mapped to PrimeNet relations (e.g.,/r/IsA is

converted to isA, /r/UsedFor is converted to usedFor).
ATOMIC Initial nodes, edges, and 9 relations.
WordNet Hyponym and hypernym are converted to isA, part holonymy is converted to partOf, substance

meronymy is converted to madeOf.
FrameNet* Four types of nodes are used (i.e., frames, frame elements, lexical units, and semantic types) and

19 relations are mapped to PrimeNet relations (e.g., is_causative_of is converted to cause).
Roget Two relations are used, i.e., synonyms and antonyms are mapped to the PrimeNet relations synonym

and antonym, respectively.
Visual Genome* The image objects are converted to WordNet synsets. The relationships between objects are mapped

to the relation locatedNear. Object attributes are represented by different relations, conditioned on
their part-of-speech, i.e., capableOf for verbs and mayHaveProperty for adjective attributes.

Wikidata* 101K statements in Wikidata-CS subset are used, and the relations are manually mapped to 15
relations.

DBpedia The instance-types subset and infobox-properties subset are used, and #type relation is converted
to PrimeNet relation instanceOf.

Step 2. Mapping Between Sources
WordNet-WordNet* Align ConceptNet and Visual Genome using WordNet InterLingual Index (ILI) generating 117,097

mappings.
WordNet-Wikidata* Generate links between WordNet synsets and Wikidata nodes using pre-trained XLNet model for

embeddings. Manual validation with 17 students. Keep 57,145 validated edges.
FrameNet-ConceptNet* Link FrameNet lexical units to ConceptNet nodes through Predicate Matrix (3,016 edges). Use

200k hand-labeled sentences from FrameNet corpus for additional linking.
Lexical Matching* Establish links between nodes in ATOMIC, ConceptNet, and Roget through exact lexical matching

of labels.
Semantic Matching Establish links between nodes in ConceptNet, Wikidata, and DBpedia through semantic matching

of labels.

We convert all labels of nodes to embeddings using pre-trained Sentence-BERT [37]5. Subsequently, we employ
the labels of nodes from another source as queries and perform embedding-based semantic search. The cosine simi-
larity metric is employed to measure semantic similarities between two nodes. We establish a link between the query
and its top-1 similar node if they share the same representation after lexical tokenization using NLTK6.

4.3. Graph Construction
Confronted with an extensive dataset of knowledge triplets, creating a graph by incorporating all of them directly is

a blunt method. Humans develop core conceptual primitives grounded in the most frequently utilized knowledge. For
example, in the realm of geography, individuals e�ortlessly understand fundamental concepts like country, continent,
and ocean, forming a foundational understanding without the need to memorize every specific detail, including aspects
like the area and visual representation of each country available in DBpedia and Visual Genome, respectively. This
insight guides our approach to graph construction through a gradual expansion strategy. We illustrate the construction
process in Fig. 3. Initially, we start from core nodes and relations to construct a new knowledge graph. For core
nodes, Core WordNet7, which contains the most frequently used 5,000 words, i.e., 3,300 nouns, 1,000 verbs, and 700
adjectives. We mainly consider knowledge from WordNet and ConceptNet, with a set of core relations: isA, madeOf,
partOf, mannerOf, usedFor, and capableOf. We denote this graph as a basic graph, which contains 488,216 nodes
and 962,228 edges. Then, we extract instanceOf and isA relations from DBpedia to expand the core graph with more
specific nodes. In this step, we employ an embedding-based semantic similarity method using pre-trained Sentence-
BERT for mapping. After integration, the graph is expanded to 1.4M nodes and 3M edges.

5Used version: https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
6https://www.nltk.org/
7https://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt
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Figure 3: Illustraction of graph construction of PrimeNet. Starting with Core WordNet, we first construct a basic graph
with core words and relations from WordNet and ConceptNet. Then, we add instanceOf knowledge from DBpedia and
Wikipedia. Next, diverse types of knowledge from other knowledge bases are incorporated into the graph of PrimeNet.

Table 4
Relations defined in the basic graph of PrimeNet, and their description, example, and
mappings to WordNet and ConceptNet.

Relations Description Example Mapping to WordNet Mapping to ConceptNet

isA A is a specific instance of B (car, isA, machine) hyponym, hypernym /r/IsA, /r/InstanceOf
madeOf A is made of B (car, madeOf, metal) meronymy /r/MadeOf
usedFor A is used for B; the purpose of A is B (hammer, usedFor, hit) - /r/UsedFor
partOf A is a part of B (gunlock, partOf, gun) holonymy /r/PartOf
mannerOf A is a specific way of B (screw, mannerOf, revolve) - /r/MannerOf
capableOf Something that A can typically do is B (bowl, capableOf, hold_water) - /r/CapableOf

Finally, we integrate commonsense knowledge from diverse sources into our graph, ensuring a wide-ranging and
diverse coverage. To map nodes from other sources to our graph, we employ the mappings developed by CSKG for
integration. Moreover, to merge nodes, we use the embedding-based similarity method to identify nodes with the same
meaning, and then use the tokenization-based method for verification. After integration, the nodes in PrimeNet are
enriched with di�erent kinds of commonsense knowledge, with 2.04M nodes and 6.03M edges.

4.4. Exploration
Then, we design multiple functions for exploring the graph that are capable of:

• Exploring graph structure of PrimeNet. For example, nodes and edges functions are designed to generate all con-
cepts and relations in PrimeNet, respectively, and get_number_of_nodes and get_number_of_edges are designed
to count the number of nodes and edges in the knowledge graph.

• Exploring commonsense knowledge for specific concepts. For example, given a concept, what_is function is
designed to get all its relations, get_polarity function is used to get its sentiment polarity, and find_path function
is designed to find a specific path in PrimeNet given a pair of concepts.

• Integrating new knowledge into PrimeNet. For example, the add_node and add_edge functions are designed to
add new concepts and relations into PrimeNet, and the add_primenet_new function is able to incorporate a new
knowledge base into PrimeNet.

We detail all the designed functions in Table 5, including their input, output, and description. These functions
make it easy to apply PrimeNet in downstream tasks, as well as update PrimeNet with new commonsense knowledge
or domain-specific knowledge.

5. Concept Detection
To create the concept-level of PrimeNet, we conduct concept detection to identify concepts that represent categories

or classes of objects, ideas, or events based on shared features or characteristics. An intuitive approach is to use the
isA relation to establish mappings between concepts and entities. For example, (dog, isA, animal), (cat, isA, animal),
and (lion, isA, animal) indicate that animal is a concept, and dog, cat, and lion are entities falling under that concept.

Q. Liu et al.: Preprint submitted to Elsevier Page 9 of 25



PrimeNet

Table 5
Functions designed for exploring PrimeNet. For each function, we introduce its input,
output, and description.

Function Input Output Description
nodes - a list of nodes Return all nodes in PrimeNet.
edges - a list of edges Return all edges in PrimeNet.
get_number_of_nodes - an int number Return the number of nodes in PrimeNet.
get_number_of_edges - an int number Return the number of edges in PrimeNet.
relation_types a node a list of relation types Return all relation types that the node involved.
what_is a node a path of the node Return the first edge of a node.
what_can_be a node a list of edges Return all edges of a node.
relation_exist a node and a relation type True or False If a relation type exists in the node return True, else False.

get_node_with_relation a node and a relation type a node Given a node A and a relation R, return node B if there is an 
edge (A, R, B).

explain a node and a relation type a chain of this node Return the chain of a node and a relation type. 
generalize a node a list of edges Return the root node of each of its relationships.

get_similarity two nodes a float score Return a score that denotes how similar two nodes are, based on 
the path similarity computed by SequenceMatcher.

get_polarity a node Positive or Negative Return the sentiment polarity of a node.
get_path start_node and end_node a path Return a path from the start_node to the end_node .
find_last_nodes a node a list of paths Return all edges where the end_node is the given node.
find_all_paths start_node and end_node a list of paths Return all paths from start_node to end_node.
get_node_degree a node a number Return the number of edges which connect with the given node.
get_phonetic a concept the phonetic information Return the phonetic information of a concept.
add_node a node - Add a node to PrimeNet if it does not exist in PrimeNet. 
add_edge an edge - Add an edge to PrimeNet.
add_primenet_new a new knowledge graph - Add a new knowledge graph to PrimeNet.
print_to_file a knowledge graph - Save a knowledge graph to a file.

Though simple, in practice, it is sub-optional to identify concepts by checking whether exist entities fall under
them. For example, animal, dog, and cargi have specific entities. However, only animal and dog are widely-used as
concepts in human daily reasoning, cargi are too specific. In this section, we study how to conduct concept detection
with appropriate abstractions.

5.1. Preliminaries
When considering the conceptualization, it is important to measure the abstractness of a term. For example, person

is a more abstract concept compared with student. Given a graph with isA relation, it is observed that abstract terms
are usually located at the higher levels in a graph, while the specific terms tend to be positioned at the lower levels Liu
et al. [9]. Specifically, the leaf nodes are regarded as the most specific terms, and they are considered as first level. The
level of non-leaf nodes defined as the length of the longest path from the leaf nodes to itself. Formally, the level of a
term is defined as following.

Definition 2 (Level Score). Given a term c, the level score of c is defined as:

level(c) =
T

max
c®Àhypo(c)

level(c®) + 1, if hypo(c) ë �

1, otherwise

(1)

where hypo(c) is a set of hyponyms of c, and � denotes an empty set.

The abstract words have higher level scores and specific terms have smaller level scores. For example, the level scores
of dog, mammal, and animal, are 72, 89, and 362, respectively.
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(a) Probabilities of Level Scores (b) Probabilities of Entropy Scores

Figure 4: Illustration of data distribution of Core WordNet and the graph of PrimeNet, considering of the level scores and
entropy scores of nodes.

It is also observed that, for an abstract term, its hyponyms are usually positioned at diversified levels, while its
hyponyms would be more concentrated for a specific term. Based on it, Liu et al. [9] defined an entropy-based metric
for the abstractness measurement. Formally, the entropy score of a term is defined as following.

Definition 3 (Entropy Score). Given a term c, its entropy score is defined as:

entropy(c) =
T

0, if c is a leaf term
*≥l

i=1 pi(c) � log pi(c) otherwise
(2)

where l is the maximum level, and pi(c) is the ratio of the number of c’s hyponyms at the i-th level to the total number
of c’s hyponyms.

The entropy of abstract terms is often greater than that of specific terms. For example, the entropy scores of pupil,
student, and people are 0.563, 0.927, and 1.790, respectively.

In general, abstract concepts and concrete entities are di�erentiated using these abstractness measure methods by
manually-defined thresholds [9]. However, these methods are inaccurate and not suitable when applied to complex
graphs with large-scale commonsense knowledge. The primary reason is the vast amount of knowledge, inevitably
leading to the presence of cycles and isolated subgraphs, significantly reducing the accuracy of the aforementioned
methods. Furthermore, some commonly used vocabulary lacks numerous lower-level nodes, e.g., voice, track, and
driver, and they have lower scores compared with other words with more hyponyms, e.g., transport, symbol, and
medicine. As such, the conceptualization methods which only rely on hierarchical information are not reasonable for
such cases.

5.2. Conceptualization
Previous methods employed a bottom-up approach to measure abstractness, where a word’s score relies on its

hyponym set. Leaves without hyponyms are initiated as the seed set and then inferred for the others. In this work, we
initialize the core concepts and then infer other words accordingly.

Specifically, the initial set of concepts, denoted as C
0 = {c1, c2, c3,5}, comprises commonly used words from

Core WordNet that describe the world in human daily life. In an ideal scenario, the hypernyms of these core words
are expected to be more abstract and should be considered as concepts. However, in practical scenario, not all of their
hypernyms can be unequivocally regarded as concepts due to the intricate interweaving of commonsense knowledge.
For instance, relationships such as (dog, isA, animal), (dog, isA, pet), (pet, isA, animal), and (dog, isA, species) are
all deemed correct and coexist within the knowledge base. Thus, we need a more accurate method to measure the
abstractness of hypernyms. It is observed that not all hypernyms have the same weight when working as the concept
of a dog. This problem has been deeply studied, and a large-scale probabilistic taxonomy, i.e., Probase [16], has been
constructed to provide statistical insights of isA relations. It includes "isA" relations for 2.7 million terms, automatically
mined from a corpus of 1.68 billion web pages. That is, each triplet (t, isA, c) is linked to a frequency score frec(t, c),
providing frequency information computed through a data-driven method based on large-scale corpus.
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For example, (dog, isA, animal) and (dog, isA, species) show that both animal and species are concepts of dog,
and freq(dog, animal) > freq(dog, species) shows animal is a more typical concept for dog, compared with species.
Given a triplet (t, isA, c), it is associated with a frequency score freq(t, c) in Probase. The frequency score is an
important signal to identify whether this relation is typical or not. Based on this observation, Wang et al. [17] propose
a typicality score, which is defined based on the frequency information to tell how popular a concept c is as far as an
entity t is concerned, and how popular an entity t is as far as a concept c is concerned:

Definition 4 (Typicality Score). Given an term t, the conditional probability Pr(ct) of a term c is defined as:

Pr(ct) = freq(t, c)≥
ciÀhyper(t) freq(t, ci)

, (3)

where hyper(t) = {c1, c2, c3,5} is the set of hypernyms of t.
Given a concept c, the conditional probability Pr(tc) of an entity t is defined as:

Pr(tc) = freq(t, c)≥
tiÀhypo(c) freq(ti, c)

, (4)

where hypo(c) = {t1, t2, t3,5} is the set of hyponyms of c.

It is observed that a terms tends to be abstract when it is strongly connected with multiple concepts. Continuing
the previous example, the term animal, pet, species link to 98, 435, 22 concepts in C

0, respectively. To formalize this
regularity, an linking-based metric is designed as follows:

Definition 5 (Conceptual Score). Given a term w and a set of concepts C, the conceptual score of w is defined as:

abstract(w) =
…

tiÀhypo(w)
1(ti À C) <

freq(ti,w)≥
ojÀhyper(ti) freq(ti, oj)

(5)

where hypo(w) = {t1, t2,5 , ti5} is the set of hyponyms of w, hyper(ti) = {o1, o2,5 , oj 5} is the set of hypernyms
of ti, and 1(ti À C) is set to 1, otherwise 0.

This scoring method is designed to quantify the extent to which a term functions as a universal, abstract link across a
diverse array of concepts. Utilizing the initial set C0, we calculate the abstraction scores of their hypernyms, presenting
the top 50 terms in Fig. 6. According to human analysis, all of them are confirmed as conceptual terms. In addition, we
present their level scores and entropy scores, revealing that these metrics fall short in inferring them as abstract terms.
For instance, topic, song, and adjective exhibit low level scores (i.e., 3, 3, and 28), and author and classic display low
entropy scores (i.e., 0.59 and 1.72), excluding them from being identified as concepts.

We employ an iterative approach to augment the concept set by systematically incorporating terms with high ab-
straction scores. In i-th iteration, we introduce the top-n (e.g., n = 3) hypernyms for each concept in C

i*1. The
constraint imposed is that these hypernyms must surpass a specified threshold Tabs. This process results in the con-
struction of an updated concept set, denoted as Ci.

6. Primitive Discovery
The primitive discovery is to identify the most basic and essential element of the world knowledge, which provides a

way to represent and organize knowledge in a structured and meaningful manner [38, 39]. The well-designed primitive
set can help to produce more accurate, scalable, and reusable knowledge bases. However, creating a thorough set of
primitives is extremely time-consuming and labor-intensive, hence it is not generally employed in most knowledge
bases [24, 20, 38, 14]. In this work, we apply automatically discover a primitive set for commonsense knowledge. The
main idea is concept clusters that are semantically connected and have a similar lexical function, and then label each
cluster as a conceptual primitive.
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Clustering 
Concepts

Primitive Detection via 
In-context Generation

Context Generation 
for Verification

The [MASK] into the unknown brings a 
sense of excitement and anticipation, 
as it unfolds new opportunities for 
learning and growth.

adventure, 
discovery, 
journey, 
expedition, 
quest,…

EXPLORATION

LLM2 as ExaminerLLM1 as Examinee
Primitive
A set of Concepts
An example sentence

Figure 5: The overall framework for primitive detection. LLM1 is used as an examinee to generate representative primitive
for each concept cluster, and LLM2 is used as an examiner to verify the primitive and its related concepts.

6.1. Concept Clustering
To achieve this goal, we employ a lexical substitution task which is to replace a concept in a sentence with a di�erent

concept, and if the grammatical structure and overall meaning of the sentence are preserved, these two concepts are
considered to have similar meanings. For example, in the sentence "the landlord tried to eject the tenants for not paying
rent on time", one could substitute the word "eject" with "dispossess", "remove", "oust", or "evict" without changing
the overall meaning of the sentence. They are clustered and assigned with a label as their primitive, i.e., EXPEL.

We implement the primitive discovery method by fine-tuning pre-trained language models using the lexical sub-
stitution task. Specifically, there are mainly three steps.

1. Training Data. We extract all the verb-noun and adjective-noun concepts from ConceptNet 5.7 [4] together
with a sample sentence for each concept. The collection of concepts is denoted as E = {e1, e2, e3,5 , en}, where each
concept ei À E is assigned with a sample sentence si. For each concept ei, we remove it from the sentence si and the
remaining sentence is denoted as its context ci. We employ pre-trained language models to represent the concept ei
and its context ci as fixed-dimensional embeddings, i.e., ei and ci, respectively.

2. Training Objective. Then, we fine-tune the pre-trained language model with a lexical substitution task. The
assumption is that a relevant lexical substitute should be both semantically similar to the target word and have a similar
contextual background. Given a concept ei, its context ci is regarded as the positive example. We create negative
examples by sampling random concepts, which are denoted as N(ei) = {e<

i,1, e
<
i,2,5 , e

<
i,z
}. The training objective

function is defined as:

O =
n…
i=1

(log(�(ei, ci)) +
…

e
<
i,j
ÀN(ei)

log(�(*e<
i,j
, ci))), (6)

where n is the number of training examples, z is the number of negative words for each example, and ej
i

denotes
the representation of a negative concept. After fine-tuning, the representation model is expected to map concepts and
context into a embedding space, where concepts that are appropriate for a given context are located close to one another.

3. Semantic Measure. We design a semantic measure to find the replacement of the concept in the embedding
space. Given a concept ei and its sentential context ci, we calculate the cosine distance of all the other concepts, e.g.,
w À E in the embedding space as:

Sim(w, (ei, ci)) = cos(w, ei) � cos(w, ci) � cos(si, swi ), (7)

where si is the original sentence, and s
w

i
is a sentence by replacing ci in si with w. The list of potential lexical

substitutions is generated by ranking candidate concepts according to the designed measure. As such, we generate the
concept clusters.

6.2. Primitive Detection
The primitive detection involves detecting the errors in each cluster, and associating a meaningful and generalizable

primitive with a cluster of related concepts. For example, the concepts like ingest, slurp, munch are represented by a
primitive EAT. It is inherent to human nature to try to categorize things, events and people, finding patterns and forms
they have in common.

Q. Liu et al.: Preprint submitted to Elsevier Page 13 of 25



PrimeNet

Table 6
Accuracy (%) assessed by human annotators. Size denotes the number of triplets in different knowledge bases.

Knowledge Bases Size Accept Reject No Judgment

TransOMCS 18.5M 41.7 53.4 4.9
ATOMIC 877K 88.5 10.0 1.5
ConceptNet 21M 88.6 7.5 3.9
PrimeNet 6M 92.4 5.2 2.4

In this work, we explore the generative ability of large language models (LLMs) for primitive detection. To ensure
the accuracy, as illustrated in Fig. 5, we design a detection-verification framework, where the first LLM works as
examinee to generate primitive for the a concept cluster, and another LLM works as examiner to check whether the
generated primitive is correct. Specifically,

Step-1: Primitive Detection by Examinee LLM The input of examinee (denoted as LLM1) is a cluster of con-
cepts. The designed prompt is "Please generate a primitive for the following concepts: <C>.", where C is a list of
concepts in a cluster.

Step-2: Primitive Verification by Examiner LLM The examiner (denoted as LLM2) is to verify whether the
primitive generated by LLM1 is correct or not. To setup LLM2, we input the primitive <P> and the related concepts
<C> into it, concatenated to the following instructions: Do you think <P> is representative for the following concepts:
<C>. Please answer "yes" or "no"..

Step-3: Explainable context by Examiner LLM For the correct primitive and cluster, we ask the LLM2 to
generate a sentence as explainable context. With the primitive <P> and the related concepts <C> into it, concatenated
to the following instructions: Please generate a short sentence to describe the primitive <P>. The sentence is assiated
with a [MASK], where can be replaced by the concepts in <C>..

7. Experiments
We start with the human assessment and verify PrimeNet is a high-quality knowledge base. Then, we test PrimeNet

on enriching distributional representations and commonsense reasoning tasks.

7.1. Task-1: Human Assessment
We first evaluate the accuracy of the knowledge presented in PrimeNet. We adopt the evaluation method and

criteria established by Hwang et al. Hwang et al. [7] and randomly select 3,000 triplets from PrimeNet and present
each triplet in the format of (head_concept, relation, tail_concept), with the description of relations provided as a
guide. The evaluation involves three annotators who hold Ph.D. degrees in computer science. The annotators use four
labels to assess each triplet: 1) always/often, indicating the triplet is frequently true; 2) sometimes/likely, indicating
it is occasionally or probably true; 3) farfetched/never, indicating it is false or extremely unlikely; and 4) invalid,
indicating it is illogical. Triplets labeled as always/often or sometimes/likely are categorized as Accept, while others
are categorized as Reject. To ensure impartial evaluation, annotators are allowed to skip unfamiliar triplets by labeling
No Judgment. The final results are determined by the majority vote among three annotators.

This experiment assesses PrimeNet’s quality and compares it to other commonsense knowledge bases, including:

• TransOMCS [5]: This is a knowledge base containing 18.5M triplets that were automatically extracted from
syntactic parses of sentences from various web sources, including Wikipedia, Yelp, and Reddit.

• ATOMIC [6]: It contains 877K textual descriptions of inferential knowledge. It is organized as typed if-then
relations with variables, such as “if X pays Y a compliment, then Y will likely return the compliment".

• ConceptNet [4]: This is a large-scale knowledge base that contains relational knowledge collected from re-
sources created by experts, crowd-sourcing, and games with a purpose [40].

Table 6 shows the human assessments of di�erent knowledge bases8. It is observed that PrimeNet stands out as the
highest quality knowledge base with an acceptance rate of 92.4%, showing that PrimeNet is highly reliable and contains

8Performances of compared knowledge bases are reported by [7], which are evaluated through crowd-sourcing on the Amazon Mechanical
Turk platform.
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commonsense knowledge that is consistent with human understanding. ConceptNet, ATOMIC20
20, and ATOMIC also

demonstrate high quality, with acceptance rates of 88.6%, 91.3%, and 88.5%, respectively. Although TransOMCS has
a vast number of triplets (i.e., 18.5M), it has a lower accuracy compared to the other resources, with an acceptance rate
of only 41.7%, indicating it may not be as reliable as the other knowledge bases.

7.2. Task-2: Semantic Similarity
We evaluate the e�ectiveness of PrimeNet by examining its impact on improving distributional representations

on the word semantic similarity task. Following previous works [41, 4, 42, 7], knowledge bases are used as external
knowledge to adjust pre-trained word embeddings. The resulting refined embeddings, molded by insights from various
knowledge bases, undergo systematic evaluation in downstream tasks, such as word semantic similarity assessments.
Enhanced performance serves as an indicator of the superior quality of knowledge bases in improving distributional
representations.

We employ a retrofitting method9 designed by Faruqui et al. Faruqui et al. [41] to improve pre-trained word embed-
dings with di�erent knowledge bases. It is designed to make words that are known to be related in a given knowledge
base have similar representations in embedding space. The training objective is to make the new embedding of a
word to be both similar to its initial embedding and nearby words in the knowledge base, by minimizing the following
objective function:

L =
n…
i=1

(↵iwi * w<
i
2 +

…
(wi,wj )ÀR

�i,jwi * wj2), (8)

where ↵ and � control the relative strengths of associations, w<
i

is the original embedding of word wi, and wi is its
new embedding, R denotes a set of relations extracted from the knowledge base, and (wi,wj) denotes a relation which
connects wi and wj . We test the retrofitted embeddings with di�erent knowledge bases on two tasks, i.e., semantic
similarity and SAT-style analogy.

This task is to measure the degree of similarity between word pairs by calculating the cosine similarities between
their embeddings, and then compare the similarities to human judgments. A good method should provide similarities
that are strongly correlated with the human judgments evaluated by Spearman correlation coe�cient [43]. We conduct
experiments on eight word similarity datasets, including YP-130 [44], MenTR-3K [45], RG-65 [46], MTurk-771 [47],
SimLex-999 [48], SimVerb-3500 [49], VERB-143 [50], and WS-353 [51].

Two popular pre-trained word embeddings are used in our experiments, including Word2Vec [52], which is trained
on the first 100M of plain text from Wikipedia10, and GloVe [53], which are trained on 6 billion words from Wikipedia
and English Gigaword11. In this task, we compare PrimeNet with FrameNet, WordNet, and ConceptNet, which contain
synonyms knowledge.

Table 7 presents the overall performance on di�erent word similarity datasets. PrimeNet demonstrated a signifi-
cant improvement in retrofitting semantic representations, with an average increase of 6.73%, 5.49%, and 5.31% for
Word2Vec (300d), GloVe (50d), and GloVe (300d), respectively. WordNet also achieved notable performance gains,
with an average improvement of 4.75%, 3.79%, and 3.98%, benefiting the high-quality synonyms knowledge con-
structed by experts. While the crowd-sourced ConceptNet only slightly outperformed Word2Vec (300d) and GloVe
(50d), and slightly worse than GloVe (300d). The solid performance gain achieved by PrimeNet suggests that it is
successful in integrating knowledge from various sources into PrimeNet and creating a robust knowledge base.

7.3. Task-3: Neuro-symbolic Commonsense Reasoning
Commonsense knowledge is important to natural language understanding through contextual reasoning. An ef-

fective method for assessing this understanding is through commonsense question-answering (QA) tasks, wherein the
ability to answer questions often hinges on possessing commonsense knowledge. In commonsense QA tasks, pre-
trained language models like BERT and RoBERTa have demonstrated their e�ectiveness in bridging the gap between
human and machine performance. Additionally, the incorporation of external knowledge bases has proven crucial

9https://github.com/mfaruqui/retrofitting
10We use the Text8Corpus which is available in Gensim: https://github.com/RaRe-Technologies/gensim-data, and the CBOW model

for training: https://code.google.com/archive/p/word2vec/
11https://nlp.stanford.edu/projects/glove/
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Table 7
Overall performance on semantic similarity. d denotes the dimension of embeddings. The
best performance is marked in bold.

Methods YP-130 MenTR-3K RG-65 MTurk-771 SimLex-999 SimVerb-3500 VERB-143 WS-353 Average (�)

Word2Vec (300d) 0.215 0.600 0.633 0.554 0.287 0.155 0.358 0.705 0.438
+FrameNet 0.334 0.589 0.620 0.571 0.295 0.227 0.321 0.651 0.451 (+1.25%)
+WordNet 0.316 0.620 0.717 0.598 0.377 0.237 0.318 0.705 0.486 (+4.75%)
+ConceptNet 0.386 0.582 0.577 0.533 0.341 0.229 0.302 0.651 0.450 (+1.16%)
+PrimeNet 0.325 0.638 0.680 0.617 0.416 0.271 0.385 0.715 0.506 (+6.73%)

GloVe (50d) 0.377 0.652 0.602 0.554 0.265 0.153 0.250 0.499 0.419
+FrameNet 0.459 0.622 0.617 0.568 0.288 0.217 0.240 0.471 0.435 (+1.61%)
+WordNet 0.510 0.649 0.688 0.540 0.342 0.239 0.188 0.500 0.457 (+3.79%)
+ConceptNet 0.427 0.599 0.558 0.493 0.356 0.234 0.236 0.489 0.424 (+0.50%)
+PrimeNet 0.443 0.674 0.707 0.597 0.376 0.236 0.273 0.485 0.474 (+5.49%)

GloVe (300d) 0.561 0.737 0.766 0.650 0.371 0.227 0.305 0.605 0.528
+FrameNet 0.589 0.701 0.756 0.639 0.361 0.278 0.274 0.558 0.519 (-0.84%)
+WordNet 0.610 0.759 0.841 0.679 0.470 0.313 0.256 0.612 0.568 (+3.98%)
+ConceptNet 0.561 0.700 0.747 0.583 0.420 0.288 0.300 0.595 0.524 (-0.34%)
+PrimeNet 0.593 0.764 0.818 0.684 0.496 0.316 0.350 0.626 0.581 (+5.31%)

for enhancing answer accuracy, providing valuable insights for contextual comprehension and reasoning. Hence, ap-
proaches that combine neural pre-trained language models with symbolic knowledge bases, known as neuro-symbolic
methods, have exhibited significant potential for advancing commonsense reasoning.

Task Setting Following previous methods [8, 54], we use a neuro-symbolic method to evaluate the commonsense
QA under a zero-shot setting proposed by Ma et al. [55]. Formally, given a natural language question q and a set of
possible answers A = {a1, a2,5 , an}, the task is to select the most probable answer a< from A. The wrong answers
in A are denoted as distractors. The pre-trained language models are used as backbone. RoBERTa-large is used in our
experiments. In a zero-shot setting, the model has no access to the training data. The neuro-symbolic solution is to
transform knowledge from di�erent knowledge bases into an artificial QA set for pre-training. For example, a triplet
(losing weight, usedFor, being healthier) is generated as losing weight is for being healthier, and several distractors are
generated by negative sampling. After pre-training, the model are tested on di�erent datasets. We follow the parameter
settings in Ma et al. [55]. The experiments are tested for five rounds, and the average accuracy of the predicted answers
is used as the metric.

Baseline We compare the neuro-symbolic methods with the following baselines. Majority answers each question
with the most frequent option in the entire dataset. Self-Talk [56] is an unsupervised method. It generates clarification
prompts based on a template prefix, which are leveraged to elicit knowledge from another language model, which is
used jointly with the original context and question to score each answer candidate. SMLM [57] is designed to pre-
train the LM with three representation learning functions which aim to complete a knowledge triple given two of its
elements. To show the upper bound, we report the supervised methods on RoBERTa-large model with access to the
training data, as well as the human performance. of this work, we include results of a supervised fine-tuned RoBERTa
system and of human evaluation. To facilitate the neuro-symbolic method for commonsense reasoning, we compare
PrimeNet with ATOMIC, ConceptNet, Wikidata, WordNet, and CSKG. Please refer to [58] for more details about QA
data generation with di�erent knowledge bases, distractors sampling, and training regimes.

Benchmarks Following Ma et al. [55], we use five commonsense QA benchmarks for evaluation, including:

• Abductive Natural Language Inference (aNLI) [59] is a binary-classification task, which is to apply abductive
reasoning and commonsense to form possible explanations for a given set of observations. Given two observa-
tions from narrative contexts, the goal is to pick the most plausible explanatory hypothesis.

• Commonsense Question Answering (CSQA) [60] contains 12,247 examples. Each example includes a question
and five answer candidates. The questions are sourced from a ConceptNet. Answer candidates are formed by
combining ConceptNet nodes with additional distractors gathered through crowdsourcing.
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Table 8
Performance of neuro-symbolic methods across five commonsense QA tasks in a zero-shot setting. RoBERTa-large< denotes
the performance of RoBERTa-large under a supervised setting.

Model Knowledge Base aNLI CommonsenseQA PIQA SocialIQA WinoGrande

Majority - 50.8 20.9 50.5 33.6 50.4
Self-talk - - 32.4 70.2 46.2 54.7
SMLM - 65.3 38.8 - 48.5 -
RoBERTa-large< - 85.6 78.5 79.2 76.6 79.3
Human Performance - 91.4 88.9 94.9 86.9 94.1

RoBERTa-large

- 65.5 45.0 67.6 47.3 57.5
ATOMIC 70.8 64.2 72.1 63.1 59.6
ConceptNet, Wikidata, WordNet 70.0 67.9 72.0 54.8 59.4
CSKG 70.5 67.4 72.4 63.2 60.9
PrimeNet 71.2 68.3 72.4 64.5 62.1

• Physical Interaction Question Answering (PIQA) [61] is a dataset for reasoning about physical commonsense.
Each question is associated with two possible solutions. The task is to choose the most appropriate solution, of
which exactly one is correct.

• Social Intelligence Question Answering (SIQA) [62] is a dataset for commonsense reasoning about social situ-
ations, with 38,000 multiple choice questions. Each example comprises a context, a question, and three answer
candidates. The context is derived from ATOMIC, questions are generated based on nine templates correspond-
ing to relations in ATOMIC, and answers are obtained through crowdsourcing.

• WinoGrande (WG) [63] contains 44K problems inspired by pronoun resolution problems in Winograd Schema
Challenge (WSG) [58]. Each example includes a context description featuring an emphasized pronoun, with
two options provided as possible references.

Performance It is observed that pre-training the language model with external knowledge is e�ectiveness to improve
the performance of commonsense QA task. The main reason is that the external knowledge is important supplementary
information for implicit knowledge embedding in pre-trained language models. Our PrimeNet achieved the best per-
formance when RoBERTa is used as backbone, showing that PrimeNet has a good quality in organizing commonsense
knowledge.

7.4. Concept Detection
We perform a probing experiment as illustrated in Fig. 4. We assume that words from Core WordNet are concepts,

given their fundamental role in describing the world. For all nodes in Core WordNet and our knowledge graph G of
PrimeNet, we show probability distributions of their level scores and entropy scores. It is observed that a considerable
number of words in Core WordNet have level scores below 50, and entropy scores under 1. These words are readily
excluded from concept sets, by applying previous methods for conceptualization.

7.5. Case Study
In our method, we manually checked the detected primitives. This step is conduct by 5 senior Ph.D. students majors

in natural language processing. We manually code the explainable of primitives. For example, INCREASE is defined
as INCREASE(obj) := obj++, which is the basic operation that increments the value of an object and provides a
foundation for more complex reasoning. It is observed that some primitives have a hierarchical structure. We show
examples of primitives in Fig. 7. At Level-1, the primitive GROW is defined as GROW(obj) = INCREASE(obj.SIZE)
:= obj.SIZE++ = obj(l++, h++, w++), which is accomplished by using the INCREASE primitive to increment
the object’s SIZE attribute, such as length (l), height (h), and width (w). The Level-2 primitive LENGTHEN is even
more specific, adding only length to an object, and it is defined as LENGTHEN(obj)=INCREASE(obj.SIZE.LENGTH)
:=obj.SIZE.LENGTH++ = obj(l++, h, w).
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Figure 6: Examples of top-50 words scored by the designed conceptual score function. We compare their level scores and
entropy scores with our conceptual scores.

8. Related Works
In this section, we conduct a comprehensive literature review on commonsense knowledge acquisition, including

crowdsourcing methods, automatic extraction methods, and approaches centered around extracting implicit knowledge
from pre-trained language models. Then, we introduce the conceptual primitives theory, which is a pivotal component
in the construction of our commonsense knowledge base.

8.1. Commonsense Knowledge Acquisition
Commonsense knowledge is not explicitly defined. It is an inherent understanding of the world that humans possess

but machines lack. To narrow the gap between human and machine intelligence, the process of acquiring commonsense
knowledge is crucial for improving machine intelligence. There are mainly three major methods to the knowledge
acquisition, i.e., crowdsourcing, automatic extraction, and mining from pre-trained language models.

8.1.1. Crowdsourcing
Crowdsourcing is a useful approach for collecting commonsense knowledge from a diverse group of human con-

tributors, such as human experts [33, 64], web users [65, 66], and participants in human computation games [67, 68].
By tapping into the collective wisdom of individuals, this approach captures intuitions and insights commonly held
by people, thus contributing valuable data to the construction of commonsense knowledge bases. The crowdsourcing
approach exhibits high adaptability across diverse tasks and domains. By involving a varied group of contributors, it
ensures that multiple viewpoints are considered, leading to the creation of a more comprehensive and balanced knowl-
edge pool. The existing knowledge bases built through crowdsourcing typically encompass the following categories
of commonsense knowledge.
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Figure 7: Examples of the hierarchical structure of primitives in PrimeNet.

Factual Knowledge It represents concrete and specific details about the world, events, people, places, objects, and
other observable phenomena, such as "wheel is part of bicycle", "dog is an animal", and "Los Angeles is located in
California". In the early 1980s, the Cyc [64] project undertook the task of manually constructing a comprehensive
knowledge base using the CycL representation language, encompassing the basic facts and rules about the world. Af-
ter the e�orts of its first decade, the Cyc project expanded to include around 100,000 terms. By the time of its release
in 2012, known as OpenCyc 4.0, the knowledge base had undergone substantial growth, encompassing over 2 million
facts across 239,000 concepts. In 2002, the DOLCE [69] (Descriptive Ontology for Linguistic and Cognitive Engi-
neering) project was designed to manually collect the ontological categories underlying natural language and human
commonsense with disambiguated concepts and relations. Freebase [70] is a collaborative knowledge base by gather-
ing data from various sources, including Wikipedia, the Notable Names Database, and contributions from community
users. Google Knowledge Graph [71] is powered in part by Freebase, with an extensive collection of billions of facts
about people, places, and things. It is served as a foundation for Google’s search results, enabling the search engine to
deliver useful and accurate information to users. ConceptNet [4] leverages crowd-sourcing contributions from users
to acquire commonsense knowledge. It originated from the Open Mind Common Sense [65] and has grown by in-
corporating data from other crowd-sourced resources, expert-created content, and purposeful games. ConceptNet is a
widely used commonsense knowledge base with over 21 million edges and 8 million nodes, covering a diverse range of
36 commonsense relations, such as isA, partOf, usedFor, and capableOf. Moreover, ConceptNet can be linked to other
knowledge bases, such as WordNet, Wiktionary, OpenCyc, and DBpedia, and now, it is a multi-lingual knowledge
base that can also build connections among 83 languages.

Lexical Knowledge There are several lexical databases manually created by experts, such as WordNet [33], Roget’s
Thesaurus [34], FrameNet [3], MetaNet [72], VerbNet [73], and PropBank [74]. Among these lexical knowledge
bases, WordNet is a highly popular lexical knowledge base which captures semantic relations between words. Within
WordNet, nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing
a distinct concept. These synsets are interlinked by means of conceptual-semantic and lexical relations. WordNet
is now available in over 200 languages, allowing researchers and linguists worldwide to explore the complexities of
language and word associations across diverse contexts.

Encyclopedic Knowledge Encyclopedic knowledge is related to a broad understanding of various subjects and top-
ics. For example, Wikidata [75] is a knowledge graph coupled with Wikipedia, which is a free, open, and multilingual
online encyclopedia that is collaboratively edited by volunteers. DBpedia [76] extracts structured information from
Wikipedia data and converts it into a machine-readable format for use in the Semantic Web and data mining domains.
The encyclopedic knowledge resources o�er a wide range of information to help people understand various topics and
fields.
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Domain Knowledge More recently, commonsense knowledge bases have been specifically developed to cater to
particular tasks. For example, SenticNet [14] is a sentiment knowledge base which captures the a�ective commonsense
and emotions expressed in natural language. Visual Genome [77] contains annotations of concepts and their relations
found in a collection of images. The image descriptions are manually written by crowd workers, and the concepts are
automatically mapped to WordNet senses and further refined by crowd workers. ATOMIC [6] is developed to capture
inferential commonsense knowledge, such as cause-and-e�ect relationships. It is developed by domain experts who
contribute and validate information about everyday events and their implied causality. ATOMIC20

20 [7] is proposed to
unify the triples from ConceptNet and ATOMIC, together with some newly developed relations.

8.1.2. Automatic Extraction
Despite commonsense knowledge is not explicitly defined, it has been observed that certain types of commonsense

knowledge can be extracted through automatic methods, such as text mining and information extraction. Compared
with crowdsourcing, these automatic extraction methods can handle large volumes of data e�ciently and at a lower cost,
making them valuable tools for e�ciently capturing and updating commonsense knowledge from various domains.

First, automatic extraction methods generally acquire commonsense knowledge from large-scale text and web
pages. For example, NELL [78] (Never-Ending Language Learning system) is designed to automatically extract struc-
tured information from unstructured Web pages. With hundreds of pre-defined categories and relations and 10 to 15
examples of each, NELL extracts knowledge from more than 500 million web pages, resulting in a large knowledge
base comprising over 2.8 million instances. WebChild [79] is constructed through automated extraction and disam-
biguation from Web contents. It utilizes seeds derived from WordNet and pattern matching techniques on large-scale
text collections to gather information, including fine-grained relations like "hasShape," "hasTaste," and "evokesEmo-
tion". ASER [15] (activities, states, events, and their relations) is a large-scale eventuality knowledge graph extracted
from more than 11-billion-token unstructured textual data. SenticNet [14] is constructed using auto-regressive lan-
guage models and kernel methods to extract polarity from text in a completely interpretable and explainable manner.
Probase [80] is constructed by extracting and organizing knowledge from a vast collection of Web pages and docu-
ments. Its subsequent version, named as Microsoft Concept Graph [81], harnesses billions of web pages and search
logs to build a huge graph of relations between concepts, and has been proven valuable in enhancing search engines,
spell-checkers, recommendation engines, and other AI-driven systems.

Second, several methods are used to improve the existing commonsense knowledge bases. The automatic extraction
methods can help fill gaps, update outdated information, and supplement missing commonsense knowledge in existing
knowledge bases. For example, BabelNet [82] is a multilingual knowledge base which is automatically created by
mapping the multilingual encyclopedic knowledge repository (Wikipedia) to the English WordNet based on multilin-
gual concept lexicalizations and machine translations. Dense-ATOMIC [83] is designed to overcome the limitations
of ATOMIC in knowledge coverage and multi-hop reasoning, by employing a knowledge graph completion approach
to train a relation prediction model and infer missing links within ATOMIC, ensuring high knowledge coverage and
facilitating massive multi-hop paths.

Third, some e�orts have been made to automatic integrate diverse commonsense knowledge bases, enhancing
the overall coverage and richness of the knowledge base. For example, YAGO [84] (Yet Another Great Ontology)
is designed to extract commonsense knowledge from Wikipedia, WordNet, WikiData, GeoNames, and other data
sources. Bouraoui et al. [85] employed Region Connection Calculus to merge open-domain terminological knowledge.
CommonSense Knowledge Graph (CSKG) [86] integrates knowledge bases from seven diverse, disjoint sources such
as ConceptNet and WordNet. Based on ASER, Zhang et al. [5] have developed TransOMCS with an algorithm for
discovering patterns from the overlap of existing commonsense and linguistic knowledge bases, and a commonsense
knowledge ranking model to select the highest-quality extracted knowledge.

8.1.3. Implicit Knowledge in Pre-trained Models
Recent advancements in pre-trained models have demonstrated significant improvements across various tasks, un-

derscoring their robust representation and generalization capabilities. These models, pre-trained on large-scale cor-
pora, have proven adept at encoding diverse forms of knowledge [87, 88]. For example, BERT (Bidirectional Encoder
Representations from Transformers) uses a masked language model objective in pre-training, where parts of the input
are masked, enabling the model to predict concealed words bidirectionally. This process empowers BERT to capture
contextualized representations, comprehensively understanding intricate relationships and meanings in di�erent lin-
guistic contexts. Similarly, GPT [89, 90, 91] (Generative Pre-trained Transformer) follows the generative language
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model paradigm, predicting the next word based on preceding context. With a unidirectional architecture processing
text from left to right during training, it acquires knowledge of grammar, facts, reasoning, and even some degree of
commonsense.

Currently, there is a trend to mine commonsense knowledge directly from pre-trained language models, leveraging
the rich information embedded in these large models. Several works are designed to probe commonsense knowledge di-
rectly from large pre-trained models, such as KB-BERT [92], KB-BERTSAGE [93], and PseudoReasoner [94]. These
approaches involve fine-tuning pre-trained language models, such as BERT and BART, on commonsense knowledge
bases like ATOMIC, ConceptNet, and ASER, with the tasks typically entails providing the head and relation in a com-
monsense triple as input, with the tail serving as the expected output. COMET [95] (COMmonsEnse Transformers)
is designed to leverage GPT to generate rich and diverse commonsense descriptions in natural language. It e�ec-
tively transforms implicit knowledge from pre-trained models into explicit knowledge within commonsense knowledge
graphs, and generates novel knowledge that humans rate as high quality. LAMA [96] (LAnguage Model Analysis) is
an unsupervised method to leverage BERT to acquire commonsense knowledge. It also serves as a framework12 for
probing and evaluating the factual knowledge encoded in pre-trained language models [97]. West et al. [98] design a
symbolic knowledge distillation to leverage some seeds from ATOMIC as prompts to acquire commonsense knowl-
edge from GPT-3, resulting a large commonsense knowledge graph ATOMIC10x and a compact commonsense model
COMETDIS

TIL
. Their work demonstrates the e�cacy of collaborative e�orts between humans and language models for

curating commonsense knowledge graphs and training e�cient, high-performing commonsense models.

8.2. Conceptual Primitives
Conceptual primitives can be defined as concepts that cannot be defined in terms of other concepts in an integration

data model which provides an overview of data, thereby forming foundations for definitions of other concepts [99].
Conceptual primitives have been of practical and theoretical interest to researchers in computer science [24], linguis-
tics [20, 21] and psychology [100]. Such research reports that the decomposition of meanings into lower-level parts is
essential for conceptualization.

We apply the idea of conceptual primitives to construct commonsense knowledge by comprising a small core of
primitive commonsense concepts and relations, linked to a much more extensive base of factual knowledge instances.
Naturally, humans tend to categorize things, events, and people by identifying common patterns and forms, which is
the basis of the conceptual primitive theory. Thus, commonsense knowledge bases built upon conceptual primitives
possess the greater potential to facilitate reasoning tasks. Recently, Cambria et al. [14] constructed SenticNet by
generalizing words and multi-word expressions into primitives and super-primitives annotated with emotion labels via
pre-trained language models, which achieved better performances on various a�ective tasks and showed the power
of conceptual primitives. Unlike SenticNet, which focuses on sentiment knowledge, we build PrimeNet to cover a
broader range of general commonsense knowledge based on conceptual primitives.

9. Conclusion
We present a new commonsense knowledge base based on the conceptual primitive theory, named PrimeNet.

Di�erent from existing knowledge bases, PrimeNet is constructed based on a small core of primitive commonsense
and relations, linked to extensive concepts and entities, which is suited for supporting commonsense reasoning. Our
studies demonstrate that PrimeNet contains high-quality commonsense knowledge and conceptual primitives. The
developed functions also enable the application and extension of PrimeNet for various reasoning tasks. The current
API of PrimeNet is https://sentic.net/api/primenet/, and PrimeNet is available on https://github.com/
senticnet/primenet. In the future, we are going to exploit additional intelligent methods for mining commonsense
knowledge and we will deploy a more convenient framework for delivering commonsense knowledge services.
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