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ABSTRACT
Subjectivity detection can prevent a sentiment classifier from
considering irrelevant or potentially misleading text. Since,
different attributes may correspond to different opinions in
the lexicon of different languages, we resort to multiple ker-
nel learning (MKL) to simultaneously optimize the differ-
ent modalities. Previous approaches to MKL for sentence
classifiers are computationally slow and lack any hierarchy
when grouping features into different kernels. In this pa-
per, we consider deep recurrent convolution neural networks
to reduce the dimensionality of the problem. Further, the
lower layers in a deep model are abstract and the higher lay-
ers become more detailed connecting attributes to opinions.
Hence, the features learned automatically in the multiple
intermediate layers can be used to train MKL classifiers de-
pending on the application. The proposed deep recurrent
MKL outperforms the accuracy of baselines by over 5-30%
and is several times faster on two benchmark datasets for
subjectivity detection. It can also be used to develop sub-
jectivity lexicons in other languages using English.

Keywords
Subjectivity Detection, Deep Convolution Neural Network,
Multiple Kernel Learning, Recurrent Neural Networks, Gaus-
sian Networks

1. INTRODUCTION
Four problems dominate sentiment classification, namely:

subjectivity detection, word sentiment classification, docu-
ment sentiment classification, and opinion extraction. Sub-
jectivity detection is the task of labeling a document as ei-
ther neutral or opinionated (i.e., positive or negative) and
can prevent sentiment classifiers from considering irrelevant
or potentially misleading text [24].

This paper was presented at the 4th International Workshop on Issues of
Sentiment Discovery and Opinion Mining (WISDOM’15), held in conjunc-
tion with the 21st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD’15) in Sydney on 10 August 2015. Copyright of this
work is with the authors.

Sentiment classifiers aim to detect the sentiment informa-
tion contained in both text [31] and videos [29]. The pres-
ence of neutral reviews, however, results in a low accuracy
when classifying negative and positive examples. Document
sentiment classification is used for comparison of consumer
opinions of different products. Here again, with rapidly
growing reviews on a product it becomes it becomes diffi-
cult for a potential consumer to make an informed decision
on whether to purchase the product. Opinion extraction is
used to summarize opinions in articles by presenting the sen-
timent polarities of correlated events. It is now convenient
for consumers to clearly see the advantages and weaknesses
of each product by merely a single glance [37].

For example in [14], the authors used domain adaptation
on the Amazon dataset containing 340,000 reviews regarding
22 different product types and for which reviews are labelled
as either positive, negative or neutral. There was a vast
disparity between domains in the total number of instances
and in the proportion of negative examples. For example,
the word conspiracy is negative in many domains, but in the
mystery novel domain, it is a favourable factor indicating
positive sentiment.

Previous methods use well established general subjectiv-
ity clues to generate training data from un-annotated text
[34, 24, 36, 3]. Bag of words (BOW) classifiers represent a
document as a multi set of its words disregarding grammar
and word order. The use of limited number of domain de-
pendent words is however not enough, when dealing with
social blogs like Twitter, as the content is often diverse and
noisy. Hence, in [34], the authors used extraction pattern
learning to automatically generate patterns that represent
subjective expressions. For example, the pattern ‘hijacking’
of < x >, looks for the noun ‘hijacking’ and the object of
the preposition < x >. Extracted features are used to train
state-of-the-art classifiers such as support vector machine
(SVM) and Naive Bayes (NB) that assume that the class
of a particular feature is independent of the class of other
features given the training data [44].

Alternatively, knowledge-based approaches [6] can be ap-
plied, together with either linear [7] or non-linear [5] cluster-
ing techniques, to infer the subjectivity of words or multi-
word expressions. In general, however, templates are not
suitable for semantic role labeling, because relevant context
might be very far away.



For semantic role labeling, we need to know the relative
position of verb, hence the features can include prefix, suf-
fix, distance from verbs in the sentence, etc. As a result, it
was found that manual lexicons focused on emotional words,
while the lexicon learned by automatic methods tend to in-
clude many neutral words, introducing noise in the detec-
tion of subjectivity. Further, it can be seen that neutral
n-grams are short while longer phrases tend to be subjec-
tive. Therefore, matrix representations for long phrases and
matrix multiplication to model composition are being used
to evaluate sentiment. For example, recursive neural net-
works predict the sentiment class at each node in the parse
tree and try to capture the negation and its scope in the
entire sentence [19, 14].

Lastly, news spreads very quickly via Twitter, hence to
model the temporal nature of sentiment flow in [22], the
authors use a sequence of sentences to design new author
dependent features. Recently, Nate Silver has made fore-
casting elections a close to real-time experience. They pro-
posed a diffusion model that predicts how a phenomenon
spreads through a network like a disease [17].

The methods described focus on English language, hence
to allow for portability to foreign languages such as Span-
ish or Arabic, dictionary based deep convolution neural net-
works are commonly used. For instance, we can assume that
synonyms convey the same orientation and antonym rela-
tions convey an inverse sentiment in the foreign language
after translation. Next, feature relatedness graphs are built
for the foreign language using mappings from foreign senses
to the English senses available in WordNet.

Convolution neural networks (CNN) are sensitive to the
order of words in a sentence and do not depend on exter-
nal language specific features such as dependency or con-
stituency parse trees [19]. Here narrow or wide convolu-
tion is achieved by applying filters such as pattern templates
across the input sequence of words. A convolution layer in
the network is obtained by convolving a matrix of weights
with the matrix of activations at the layer below and the
weights are trained using back propagation [12]. Next to
model sentiment flow, in [18], the authors used recurrent
CNN to model the dynamics in dialogue tracking and ques-
tion answering systems. However, they assume that the data
is uni-modal.

Since, different attributes such as quality or cost may cor-
respond to different opinions such as good or bad, we resort
to a deep multiple kernel learning framework to simultane-
ously optimize the different modalities. The proposed meta-
level feature representation does not depend on the vocab-
ulary size of the collection and hence provides considerable
dimensionality reduction in comparison to unigram or n-
gram models. In the next section, we review some recent
work on the application of Multiple Kernel Learning (MKL)
to natural language processing.

2. RELATED WORK AND OUTLINE
Subjectivity detection is a key problem in both knowledge-

based [8] and statistical sentiment analysis [9], as sentiment
classifiers are usually optimized for the detection of either
positive or negative polarity. Different linear classification
models have been proposed in the past but recently kernel
methods have become increasingly popular, as non-linear
kernels such as radial basis functions (RBF) show a consid-
erably higher accuracy as compared to linear models.

It is often desirable to use multiple kernels simultane-
ously as multiple feature representations are derived from
the sentences or because different kernels such as RBF or
polynomial are used to measure the similarity between two
sentences for the same feature representation. MKL is a
feature selection method where features are organized into
groups and each group has its own kernel function [35, 48].
However, the choice of kernel coefficients can have signifi-
cant impact on the classification accuracy and efficiency of
MKL [4].

Most previous applications of MKL have been in image
and video classification and object recognition. For example
in [15], multiple kernel learning (MKL) was used simultane-
ously optimize different modalities in Alzheimer disease im-
ages since different types of tests may reveal different aspects
of the diagnosis. Recently, MKL with Fourier transform on
the Gaussian kernels have been applied to Alzheimer disease
classification using both sMRI and fMRI images [21]. MKL
was also used to detect presence of large lump in images
using a convolution kernel on Gaussian features [27].

In [40], higher order kernels are used to enhance the learn-
ing of MKL. Here, block co-ordinate Gradient optimization
is used that approximates the Hessian matrix of deriva-
tives, as a diagonal resulting is loss of information. Group-
sensitive MKL for object recognition in images integrates
a global kernel clustering method with MKL for sharing of
group-sensitive information [47]. They showed that their
method outperformed baseline-grouping strategies on the
WikipediaMM data of real-world web images. The draw-
back of this method is that a looping strategy is used to
relabel the groups and may not reach the global optimum
solution. In [39],

MKL was also used to combine and re-weight multiple
features by using structured latent variables during video
event detection [39]. Here, two different types of kernels
are used to group global features and segments in the test
video that are similar to the training videos. The concept of
kernel slack variables for each of the base kernels was used
to classify YouTube videos in [46]. In order to select good
features and discard bad features that may not be useful to
the kernel, [25] used a beta prior distribution. Lastly, Online
MKL shows good accuracy on object recognition tasks by
extending online kernel learning to online MKL, however the
time complexity of the methods is dependent on the dataset
[45].

In the case of sentiment analysis, MKL was applied to
Polish opinion aggregator service contains textual opinions
of different products in [43], however they did not consider
the hierarchical relation of different attributes of products.
Video and text multi-modal features were also fused at dif-
ferent levels of fusion for indexing of web data in [26], how-
ever they are computationally very slow. It can be seen that
the main challenges in using MKL is the computational time
and the choice of suitable grouping strategy.

In this paper, we propose use of deep recurrent convolu-
tion neural networks to extract significant time dependent
phrases and features from time series of sentences in a doc-
ument or blog. These different feature representations at
intermediate levels are optimized simultaneously in a multi-
ple kernel learning classifier for subjectivity detection. The
significance and contributions of the research work presented
in this paper can be summarized as follows:

• In this paper, we consider deep recurrent multiple ker-



nel learning to learn subjectivity features from para-
graphs. From our knowledge, no previous work has
considered MKL to simultaneously optimize the fea-
tures learned in the different layers of deep recurrent
convolution neural networks.

• In a deep model, the lower layers are abstract and
the higher layers become more detailed connecting at-
tributes to opinions. The subsets of features in the
intermediate layers are hence portable to other lan-
guages such as Spanish after training in English. Fur-
ther, pre-training of the deep neural network is done
using Gaussian Bayesian networks over Subjectivity
clues in English.

• The k-gram sliding window features learned by deep
convolution neural network are used to train a recur-
rent neural network that can determine the temporal
dependence among learned features. These features
are then used to learn the MKL classifier using with
Gaussian kernels.

Figure 1 illustrates the state space of the proposed Deep
Recurrent Multiple Kernel Learning with time delays for
three sentences in a review on iPhone. The CNN extracts
significant k-gram features and reduce the dimensionality of
the data. Next, recurrent neural network (RNN) is used to
learn time-delayed features and reduce the dimensionality
further. The hidden neurons are interconnected and the
dashed lines correspond to time delay edge for output of
hidden neurons that becomes a part of the input at next
time point. Lastly, MKL is used to classify the sentences.

To verify the effectiveness of deep recurrent MKL in cap-
turing dependencies in high-dimensional data, we consider
the MPQA corpus [44], which is a collection of 535 English-
language news articles from a variety of news sources manu-
ally annotated for subjectivity. From the 9,700 sentences in
this corpus, 55% of the sentences are labelled as subjective
while the rest are objective. Further, to measure the porta-
bility of the proposed method on language translation task
we consider a corpus of 504 sentences manually annotated
for subjectivity in Spanish [23]. Here, we try to develop a
Subjectivity lexicon for Spanish language using the avail-
able resources in English. The classification accuracy ob-
tained using the proposed deep recurrent MKL is shown to
outperform the baseline by over 5-30% on the real datasets.

The rest of the paper is organized as follows: Section 3
provides the preliminary concepts necessary to comprehend
the proposed deep recurrent MKL algorithm of the present
work. In section 4, we introduce the proposed deep recur-
rent MKL for sentences and describe the algorithm for learn-
ing the weights of the framework. Lastly, in section IV, we
validate our method on real world benchmark dataset on
subjectivity detection.

3. PRELIMINARIES
In this section, we briefly review the theoretical concepts

necessary to comprehend the present work. We begin with a
description of maximum likelihood (ML) estimation of edges
in dynamic Gaussian Bayesian networks where each node is
a word in a sentence. Next, we show how high ML word
network motifs predicted by GBN can be used to pre-train
the weights of a deep convolution neural network that clas-

sifies sentences by minimizing a global error function over a
linear combination of words in a sentence.

Notations : Consider a Gaussian network (GN) with
time delays which comprises a set of N nodes and obser-
vations gathered over T instances for all the nodes. Nodes
can take real values from a multivariate distribution deter-
mined by the parent set. Let the dataset of samples be
X = {xi(t)}N×T, where xi(t) represents the sample value of

the i th random variable in instance t. Lastly, let ai be the
set of parent variables regulating variable i.

3.1 Gaussian Bayesian Networks
In tasks where one is concerned with a specific sentence

within the context of the previous discourse, capturing the
order of the sequences preceding the one at hand may be
particularly crucial. We take as given a sequence of sen-
tences s(1), s(2), . . . , s(T ) and the corresponding target la-
bels y(t) ∈ {Subj,Obj}. Each sentence in turn is a sequence
of words so that s(t) = (x1(t), x2(t), . . . , xL(t)), where L is
the length of sentence s(t).

Thus, the probability of a word p(xi(t)) follows the distri-
bution :

p(xi(t)) = P (xi(t)|(x1(t), x2(t), (1)

. . . , xi−1(t)), (s(1), s(2), . . . , s(t− 1))

A Bayesian network is a graphical model that represents
a joint multivariate probability distribution for a set of ran-
dom variables [33]. It is a directed acyclic graph S with a
set of parameters θ that represents the strengths of connec-
tions by conditional probabilities. The BN decomposes the
likelihood of node expressions into a product of conditional
probabilities by assuming independence of non-descendant
nodes, given their parents.

p(X|S,θ) =
∏N

i=1
p(xi|ai, θi,ai), (2)

where p(xi|ai, θi,ai) denotes the conditional probability of
node expression xi given its parent node expressions ai in
the current or previous time points, and θi,ai denotes the
ML estimate of the conditional probabilities.

To find the likelihood in (2), and to obtain the optimal
Gaussian network, Gaussian BN assumes that the nodes are
multivariate Gaussian. That is, expression of node i can
be described with mean µi and covariance matrix Σi of size
N × N. The joint probability of the network can be the
product of a set of conditional probability distributions given
by:

p(xi|ai) = θi,ai ∼ N

(
µi +

∑
j∈ai

(xj − µj)β, Σ
′
i

)
, (3)

where Σ
′
i = Σi−Σi,aiΣ

−1
ai

ΣTi,ai
and β denotes the regression

coefficient matrix, Σ
′
i is the conditional variance of xi given

its parent set ai, Σi,ai is the covariance between observa-
tions of xi and the variables in ai, and Σai is the covariance
matrix of ai.

To compute the likelihood of Σ
′
i efficiently we can use

Cholesky decomposition :

Σ
′
i = RTR (4)

where R is an upper triangular matrix, and the likelihood

of Σ
′
i is simply the sum of the log of the diagonal elements

of R.



To extract dynamic network motifs, we simply compute
conditional probabilities using parent word expressions in
the previous r time points. Next, high ML word network
motifs compute using (3) can be used as prior features for
training convolution neural network models described in the
next section.

3.2 Deep Convolution Neural Networks
The idea behind convolution is to take the dot product of

a vector of k weights wk also known as kernel vector with
each k-gram in the sentence s(t) to obtain another sequence
of features c(t) = (c1(t), c2(t), . . . , cL(t)).

cj = wk
T .xi:i+k−1 (5)

We then apply a max pooling operation over the feature
map and take the maximum value ĉ(t) = max{c(t)} as the
feature corresponding to this particular kernel vector. Sim-
ilarly, varying kernel vectors and window sizes are used to
obtain multiple features [19]. For each word xi(t) in the
vocabulary, an d dimensional vector representation is given
in a look up table that is learned from the data [13]. The
vector representation of a sentence is hence a concatenation
of vectors for individual words. Similarly, we can have look
up tables for other features. One might want to provide fea-
tures other than words if these features are suspected to be
helpful. Now, the convolution kernels are applied to word
vectors instead of individual words.

Since, the computation of gradient becomes difficult with
increasing number of layers, we consider a deep belief net-
work for learning the subjectivity features. A deep belief
network (DBN) is a type of deep neural network that can
be viewed as a composite of simple, unsupervised models
such as restricted Boltzmann machines (RBMs) where each
RBMs hidden layer serves as the visible layer for the next
RBM. RBM is a bipartite graph comprising two layers of
neurons: a visible and a hidden layer; it is restricted such
that the connections among neurons in the same layer are
not allowed.

To compute the weights W of an RBM, we assume that
the probability distribution over the input vector x is given
as:

p(x|W ) =
1

Z(W )
exp−E(x;W ) (6)

where Z(W ) =
∑

xexp−E(x;W ) is a normalisation constant.
Computing the maximum likelihood is difficult as it involves
solving the normalization constant, which is a sum of an
exponential number of terms. The standard approach is
to approximate the average over the distribution with an
average over a sample from p(x|W ), obtained by Markov
chain Monte Carlo until convergence.

To train such a multi-layer system, we must compute
the gradient of the total energy function E with respect
to weights in all the layers. To learn these weights and
maximize the global energy function, the approximate max-
imum likelihood contrastive divergence (CD) approach can
be used. This method employs each training sample to ini-
tialize the visible layer. Next, it uses the Gibbs sampling
algorithm to update the hidden layer and then reconstruct
the visible layer consecutively, until convergence [16]. As an
example, here we use a logistic regression model to learn the
binary hidden neurons and each visible unit is assumed a
sample from a normal distribution [38].

The continuous state ĥj of the hidden neuron j, with bias
bj , is a weighted sum over all continuous visible nodes v and
is given by:

ĥj = bj +
∑
i

viwij , (7)

where wij is the connection weight to hidden neuron j from
visible node vi. The binary state hj of the hidden neuron
can be defined by a sigmoid activation function:

hj =
1

1 + e−ĥj
. (8)

Similarly, in the next iteration, the binary state of each
visible node is reconstructed and labelled as vrecon. Here,
we determine the value to the visible node i, with bias ci,
as a random sample from the normal distribution where the
mean is a weighted sum over all binary hidden neurons and
is given by:

v̂i = ci +
∑
j

hiwij , (9)

where wij is the connection weight to hidden neuron j from
visible node vi. The continuous state vi is a random sample
from N (v̂i, σ), where σ is the variance of all visible nodes.
Lastly, the weights are updated as the difference between
the original and reconstructed visible layer using:

4wij = α(< vihj >data − < vihj >recon), (10)

where α is the learning rate and < vihj > is the expected
frequency with which visible unit i and hidden unit j are
active together when the visible vectors are sampled from
the training set and the hidden units are determined by (7).
Finally, the energy of a DNN can be determined in the final
layer using E = −

∑
i,j vihjwij .

To extend the deep belief networks to convolution deep
belief network (CDBN) we simply partition the hidden layer
into Z groups. Each of the Z groups is associated with a k×d
filter where k is the width of the kernel and d is the number
of dimensions in the word vector. Let us assume that the
input layer has dimension L × d where L is the length of
the sentence. Then the convolution operation given by (5)
will result in a hidden layer of Z groups each of dimension
(L− k + 1)× (d− d+ 1). These learned kernel weights are
shared among all hidden units in a particular group. The
energy function is now a sum over the energy of individual
blocks given by:

E = −
Z∑
z=1

L−k+1,1∑
i,j

k,d∑
r,s

vi+r−1,j+s−1h
z
ijw

k
rs (11)

The CNN sentence model preserve the order of words by
adopting convolution kernels of gradually increasing sizes
that span an increasing number of words and ultimately the
entire sentence [18]. Since, different attributes may corre-
spond to different opinions in the next section we resort to a
deep multiple kernel learning framework to simultaneously
optimize the different modalities in text.

4. DEEP RECURRENT MKL
In this section, we describe the deep recurrent MKL frame-

work. Here, the low dimensional features learned in the in-
termediate layer of a deep recurrent CNN are used to train
the MKL classifier.
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Figure 1: Illustrates the state space of a Deep Recurrent Multiple Kernel Learning with time delays for three
sentences in a review on iPhone. The CNN extracts significant k-gram features and reduce the dimensionality
of the data. Next, RNN is used to learn time-delayed features and reduce the dimensionality further. The
hidden neurons are interconnected and the dashed lines correspond to time delay edge for output of hidden
neurons that becomes a part of the input at next time point. Lastly, MKL is used to classify the sentences.

To pre-train the deep recurrent CNN, we use the training
data to extract high ML network motifs on top subjectivity
clue words similar to the approach described in [11]. To cre-
ate the modified training data the time series of sentences
is used to generate a sub-set of sentences containing high
ML motifs using (3). The frequency of a sentence in the
new dataset will also correspond to the corresponding num-
ber of high ML motifs in the sentence. In this way, we are
able to increase the weights of the corresponding causal fea-
tures among words and concepts extracted using Gaussian
Bayesian networks.

Since, the number of possible words in the vocabulary is
very large, we consider only the top subjectivity clue words
to learn the GBN layer. In-order to preserve the context of
words in conceptual phrases such ‘touch-screen‘; we consider
additional nodes in the Bayesian network for phrases with
subjectivity clues. The new set of sentences is used to learn
the word vectors and pre-train the deep neural network prior
to training with the complete dataset.

Algorithm 1 shows the pseudo code for creating a modi-
fied training data using Gaussian Bayesian networks of sub-
jectivity clues. Here, we consider up-to r previous sequences
when computing the likelihood of network motifs and the
maximum number of possible parent words is denoted as g.
Lastly, the threshold γ is used to select high ML network
motifs and create the new training data 4̂ as described in
line no’s 3:11.

However, several word dependencies may occur across sen-
tences hence, in this paper we further consider a recurrent
neural network layer to extract significant time-delayed fea-
tures in the sentences.

4.1 Recurrent Neural Networks
The standard RNN output, xl(t), at time step t for each

layer l is calculated using the following equations :

xl(t) = f(W l
R.xl(t− 1) +Wl.xl−1(t)) (12)

where WR is the interconnection matrix among hidden neu-
rons and Wl is the weight matrix of connections between
hidden neurons and the input nodes, xl−1(t − 1) is the in-
put vector at time step t from layer l − 1, vectors xl(t) and
xl(t−1) represent hidden neuron activations at time steps t
and t−1 and f is the non-linear activation function. To learn
the weights of the RNN, back propagation through time is
used where the hidden layer is unfolded in time using du-
plicate hidden neurons. Figure 1 illustrates the state space
of a recurrent neural network with inter-connected hidden
neurons and feedback delays.

Each new layer of hidden neurons models a single time
delay and is trained using time shifted input data. The
features learned at the hidden neurons can then be used
to train standard classifiers such as MKL. Algorithm 1
shows the pseudo code for learning temporal features using
recurrent neural networks in line no 28:40.



Algorithm 1 Deep Recurrent Multiple Kernel Learning

1: Input : Training sequence of sentences s = {s(1), s(2), . . . , s(T)}
with max length L and corresponding class labels y(t) ∈
{Subj,Obj}.

2: Output : Class labels of Test Sentences
3: % Extract modified training data ŝ using Gaussian Bayesian

Networks of subjectivity clues
4: θ = {θi,ai

= p(xi|ai), |ai| ≤ g}∀i, ∀ai using (3) and time series
s and parent expression from up-to r previous time points.

5: M = {θi,ai
≥ γ}, ∀θi,ai

∈ θ
6: ŝ =
7: for t = 1 to T do
8: for m = 1 to |M | do
9: if {i, ai}m ∈ {s(t) : s(t− r)} then
10: ŝ = ŝ

⋃
{s(t) : s(t− r)}

11: end if
12: end for
13: end for
14: ŝ = ŝ

⋃
s

15: % Extract k-gram features using deep convolution neural net-
work

16: Construct a minimal deep CNN with visible layer of L× d nodes
and first hidden convolution layer l of nl k-gram neurons

17: repeat
18: for t = 1 to |ŝ| do
19: Initialize the visible layer with tth training sample in ŝ(t)
20: Use (11) to do convolution
21: Update Wl using CD given by (10) ∀l
22: end for
23: Compute change in reconstruction error 4ε on training data

ŝ
24: if 4ε is significant then
25: Construct another convolution hidden layer of neurons
26: end if
27: until Adding a layer does not change visible layer reconstruction

error
28: Construct a penultimate hidden logistic layer of nh neurons and

nd output neurons
29: Fine-tune weights using known class label of training samples
30: The expression of ŝ samples at nh learned features of the logistic

layer form the new dataset ŝ2 of dimension nh × T.
31: % Extract temporal features using recurrent neural network
32: Construct a minimal RNN with visible layer of with nh nodes and

first layer of nr interconnected hidden neurons with time-delays
33: repeat
34: for t = 1 to |ŝ2| do
35: Initialize the visible layer with tth training sample in ŝ2(t)

36: Update Wl layer weights and W l
R neuron interconnection

weights using CD given by (10)
37: end for
38: Compute change in reconstruction error 4ε on training data

ŝ2
39: if 4ε is significant then
40: Construct another hidden layer of interconnected neurons
41: end if
42: until Adding a layer does not change visible layer reconstruction

error
43: The expression of ŝ2 samples at nr learned features of the hidden

neurons form the new dataset ŝ3 of dimension nr × T.
44: % Classification using Multiple Kernel Learning
45: Train an MKL classifier with nr features and T samples using

(13)
46: Each test sample is used to generate nh outputs from deep CNN

and nr outputs from RNN and finally classified using MKL

The weight matrix W l
R computes the interconnection ma-

trix of hidden neurons using outputs at previous R time
steps. To determine the number of hidden neurons in each
new layer it is convenient to use the number of significant
principle components in the input data.

4.2 Multiple Kernel Learning
Multiple kernel learning uses the sequence of sentences

s(1), s(2), . . . , s(T ) and the corresponding target labels y(t) ∈
{Subj,Obj} to train a classifier of the dual form :

max
β

min
α

1

2

T∑
i=1

T∑
j=1

αiαjy(i)y(j)

(
M∑
m=1

βmKm(s(i), s(j))

)
−

T∑
i=1

αi,

s.t

T∑
i=1

αiy(i) = 0,

M∑
m=1

βm = 1, 0 ≤ αi ≤ C∀i. (13)

where M is the total number of positive definite Gaussian
kernels Km(s(i), s(j)) each with a set of different parame-
ters and αi, b and βm ≥ 0 are co-efficients to be learned
simultaneously from the training data using quadratic pro-
gramming.

4.3 Deep MKL Framework
Algorithm 1 describes the complete framework for pre-

dicting time-delayed networks using the proposed deep re-
current MKL. We first construct a minimal deep CNN with
visible layer of L×d nodes, where L is length of the sentence
and d is the number of features for each word; first hidden
convolution layer of k-gram neurons, second hidden logistic
layer of nh neurons and nd output neurons. The nh features
expressed at logistic layer after training form the new in-
put data of T samples. Next, we construct a RNN with nh
input nodes and nr hidden neurons with time-delays. The
nr features expressed at the hidden neurons after training
form the new input data of T samples. Lastly, we train an
MKL classifier with nr features and T samples. Each test
sample is used to generate nh outputs from deep CNN and
nr outputs from RNN and finally classified using MKL.

To determine the number of hidden layers in the deep
CNN and the RNN, we compute the change in visible layer
reconstruction error 4ε on the training samples. This is the
root means square error between input training sample and
reconstructed sample at each visible node. If there is a sig-
nificant change in the error 4ε, a new hidden layer is added.
The layer weights are then learned and the reconstruction
error is recomputed. The above progresses iteratively un-
til further addition of hidden layers does not change the
classification precision error significantly, and the optimal
configuration is achieved. To determine the optimal number
of hidden neurons in a single layer, we consider the number
of significant principal components in the training data for
that layer.

Each hidden neuron in the final output layer will corre-
spond to a particular class. The contrastive divergence ap-
proach will sample features with high frequency into the
upper layers, resulting in the formation of phrases at hidden
neurons in the first layer, bigger sentences at hidden neurons
in second hidden layer and so on. We iterate through the
algorithm until there is no significant change in the weights
at the lth layer.



5. EXPERIMENTS
In order to evaluate the performance of our method on

a large dataset, we use the MPQA corpus [44], which is
a collection of 535 English-language news articles from a
variety of news sources manually annotated for subjectivity
after machine translation from Spanish. There are 9,700
sentences in this corpus, 55% of the sentences are labelled
as subjective while the rest are objective.

Next, to measure the portability of the proposed method
on language translation task we consider another MPQA
Gold corpus of 504 sentences manually annotated for subjec-
tivity in Spanish. The annotation resulted in 273 subjective
and 231 objective sentences as described in [23]. Lastly, the
sentences are machine translated into English to obtain the
training dataset.

The second corpus is small, as the annotators need to be
trained with annotation guidelines in Spanish. Some sen-
tences are difficult to annotate as Objective or Subjective
and hence are annotated by several different annotators.
However, it is a popular benchmark used by previous au-
thors, and can evaluate the robustness of Deep MKL when
few training samples are present. Hence, we aim to provide
a comparison with baselines on different training data sizes.

5.1 Preprocessing
The data pre-processing included removing top 50 stop

words and punctuation marks from the sentences. Next, we
used a POS tagger to determine the part-of-speech for each
word in a sentence. Subjectivity clues dataset [34] contains
a list of over 8,000 clues identified manually as well as au-
tomatically using both annotated and un-annotated data.
Each clue is a word and the corresponding part of speech.
The frequency of each clue was computed in both subjec-
tive and objective sentences of the MPQA corpus. Here we
consider the top 50 clue words with highest frequency of oc-
currence in the subjective sentences. We also extracted 25
top concepts containing the top clue words using the method
described in [30, 32].

In order to determine the optimal structure among the top
words and concepts in subjective and objective sentences,
each of the 9,700 sentences was transformed to a binary fea-
ture vector where presence of a top word is denoted as ’1’
and absence is denoted as ’0’. Since, each sentence is depen-
dent on the previous sentence in the article; the resulting
matrix of words versus frequency is a time series. It must
be noted that each word in a sentence is also dependent on
the preceding words. Subsequently, we divide the matrix
into subjective and objective datasets.

We use multivariate Gaussian Bayesian fitness function to
extract the maximum likelihood (ML) probabilities of each
word given up-to three parent words and up-to two time
points delay. Such sub-structures are referred to as network
motifs. Top 20% of Motifs with high ML are used to select
the training sentences for the convolution neural network.

Table 1: F-measure by different models for classify-
ing sentences in a document as Subjective and Ob-
jective in MPQA dataset.

Dataset NBSVM CNN-MC SWSD UWSD Deep MKL
MPQA 86.3 89.4 80.35 60 97.2

Table 2: F-measure by different models for classify-
ing Spanish sentences in a document as Subjective
and Objective in MPQA Gold dataset. Precision,
Recall and F-measure of correctly classifying test
data from both classes is reported.

Model Type Precision Recall F-measure

Rule Based [23]
Obj 0.56 0.48 0.52
Subj 0.8 0.2 0.32
Total 0.62 0.33 0.44

Bootstrapping [10]
Obj 0.56 0.48 0.52
Subj 0.8 0.21 0.32
Total 0.62 0.33 0.43

Deep MKL
Obj 0.7 0.7 0.69
Subj 0.81 0.8 0.8
Total 0.75 0.75 0.75

SVM [2]
NB 0.62 0.62 0.62

SVM 0.62 0.62 0.62

5.2 Comparison with Baselines
Lastly, the CNN is collectively pre-trained with both sub-

jective and objective sentences that contain high ML word
and concept motifs. The word vectors are initialized using
the LBL model and a context window of size 5 and 30 fea-
tures. Each sentence is wrapped to a window of 50 words to
reduce the number of parameters and hence the over-fitting
of the model.

A deep CNN with three hidden layers of 100 neurons and
kernels of size {3, 4, 5} and one logistic layer of 300 neurons is
used. The output layer corresponds to two neurons for each
class of sentiments. The 300 feature outputs of deep CNN
are used to train a recurrent NN with 10 hidden neurons
and up-to 2 time point delays. These 10 features are then
used to train the simpleMKL classifier.

We used 10 fold cross validation to determine the accu-
racy of classifying new sentences using the trained convo-
lution neural network classifier. A comparison is done with
classifying the time series data using baseline classifiers such
as Naive Bayes Support Vector Machine (NBSVM) [41, 42],
Multichannel Convolution Neural Network (CNN-MC) [20],
Subjectivity Word Sense Disambiguation (SWSD) [28] and
Unsupervised-WSD (UWSD) [1]. Table 5.1 shows that deep
recurrent MKL outperforms previous methods by 5-12% in
accuracy. Almost 12% improvement is observed over NB-
SVM. In addition, we only consider word vectors of 30 fea-
tures instead of the 300 features used by CNN-MC and hence
are 10 times faster.

We can also theoretically justify the higher accuracy of
the proposed Deep MKL compared to baselines. NBSVM
is a variant of SVM that uses NB log-odds ratios as input
features. However, it assumes a single kernel function for the
entire dataset. Since, different attributes may correspond
to different opinions in the lexicon of different languages.
Hence, in this paper, Deep MKL divides the data into a
hierarchy of groups and a different kernel is used for each
group.

Similarly, CNN-MC used a single hidden layer of neurons
that lacks any hierarchy when learning features. However,
in a deep sentence model, the lower layers are abstract con-
cepts and the higher layers become more detailed connecting
attributes to opinions. Hence, we propose to use several hid-
den layers with kernels of increasing width [14]. It can be
justified that sentences of different lengths will be optimally
classified at different depths.



Table 3: Top 3-grams correlated to features in English and Spanish learned at the hidden neurons in proposed
deep recurrent MKL for ’Subjective’ and ’Objective’ sentences in the Gold MPQA corpus. The Subjectivity
clues are shown in bold

English Spanish
Model 1 2 3 1 2 3

Subjective
Communist victory dealt Victoria comunista trato

group commended ability grupo elogio la capacidad
baseball men agree los hombres de beisbol coinciden
traitors assured our tratados aseguraron nuestra

Objective
1954 when hit 1954 cuando es golpeado

throats shantung like gargantas shantung como
spectators white crush Espectadores aplastamiento blanco

grandmother watching event abuela evento viendo
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Figure 2: Kernel Co-efficients evolving with iterations in MKL. (a) Kernel Co-efficients for input features
learned by Deep CNN (b) Kernel Co-efficients evolving for input features learned by Deep CNN followed by
RNN.

The Bootstrapping method starts with a set of seed words
in Spanish and iteratively includes new words into the lexi-
con with maximum similarity in each Bootstrap or iteration.
Such a method is unable to capture the temporal dependence
between sentences. By using a layer of recurrent neurons, we
are able to learn time-delayed features for polarity changes
within a single review. Lastly, WSD and rule based classi-
fiers are heavily dependent on templates and do not consider
the relative positions between nouns and verbs.

Similarly, for the MPQA gold corpus a comparison was
done with baseline classifiers such as rule-based classifier
[23], bootstrapping based classifier [10], SVM and Naive
Bayes [2]. Table 2 shows that the F-measure of deep recur-
rent MKL outperforms previous methods by almost 5-30% .
Almost 30% improvement was observed over rule based clas-
sifiers. In addition, it is much faster than baseline classifiers
such SVM.

5.3 Visualizing learned Text features
To visualize the learned features we consider the 3-grams

in the test set that show highest activation when convolved
with the learned kernels. Here, we simply consider the root
mean square error between predicted 3-gram kernel vectors
and the prior word-vectors for each 3-gram learned using
co-occurrence data.

Table 3 shows Top 3-grams correlated to features learned
at the hidden neurons in proposed deep recurrent MKL for
’Subjective’ and ’Objective’ sentences in the Gold MPQA
dataset. It can be seen that our method captures subjective
and objective sentiments in 3-grams very accurately, the ob-

jective 3-grams are factual while the objective 3-grams are
strongly positive or negative comments. Further, by trans-
lating them into Spanish we can determine new Subjective
clues and their context using the clues in English language.

5.4 Visualizing learned Support Vectors
Figure 3 shows the support Vectors predicted by MKL.

Subjective data is in Green and Objective data is in Red.
Subjective Support Vectors are Blue and Objective Support
Vectors are Yellow. Figure 2(a) shows the support Vectors
for two features learned by Deep CNN and Figure 2 (b)
shows the support Vectors for two features learned by Deep
CNN followed by RNN. It can be seen that the features
learned by Deep CNN are overlapping and MKL is not able
to classify them easily. However, by using a recurrent neural
network we learn new features that are linearly separated
with high accuracy.

Figure 2 shows the number of kernels used by both datasets
and the evolution of kernel co-efficients with iterations in
MKL. Figure 2(a) shows the kernel co-efficients for input fea-
tures learned by Deep CNN and Figure 2 (b) shows the ker-
nel co-efficients evolving for input features learned by Deep
CNN followed by RNN. The features learned by deep CNN
only require 3 distinct kernels to capture the multi-modal ef-
fect however, the features learned by RNN are multi-modal
and require 18 distinct kernels that evolve to classify the
data with high accuracy. Hence, we can conclude that by
using RNN prior to MKL we can extract significant multi-
modal features in the data.
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Figure 3: Support Vectors predicted by MKL. Subjective data is in Green and Objective data is in Red.
Subjective Support Vectors are Blue and Objective Support Vectors are Yellow (a) Support Vectors for two
Features learned by Deep CNN (b) Support Vectors for two features learned by Deep CNN followed by RNN.

6. CONCLUSION
In this paper, we have proposed deep recurrent multi-

ple kernel learning to classify a sequence of sentences as
Subjective or Objective. Our simulation and experimental
study show that the method outperforms several baseline
approaches in terms of prediction accuracy. On the real
benchmark dataset, it could achieve almost 5-30% improve-
ment in prediction accuracy to previous approaches and was
much faster.

Multiple kernel learning is extremely slow for natural lan-
guage tasks. Hence, we consider deep recurrent convolution
neural networks to reduce the dimensionality of the problem
and learn a hierarchy of phrases such that the lower layers
are more abstract and the higher layers combine phrases to
connect attributes and opinions. The different phrase rep-
resentations learned in the intermediate layers are simulta-
neously optimized using the MKL classifier.

Deep CNN is able to extract significant k-gram phrases
and then recurrent neural network further reduces the di-
mensionality by selecting significant time-delayed features
to train the MKL classifier. Since, different features of the
same sentence may have different effects on the sentiment
of sentence, the MKL classifier is able to better capture the
multi-modal nature of the dataset.
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