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Abstract—In this work we investigate several machine learning methods to tackle the problem of
intent classification for dialogue utterances. We start with Bag-of-Words (BoW) in combination
with Naı̈ve Bayes (NB). After that, we employ Continuous Bag-of-Words (CBoW) coupled with
Support Vector Machines (SVM). Then follow Long Short-Term Memory (LSTM) networks, which
are made bidirectional. The best performing model is hierarchical, such that it can take
advantage of the natural taxonomy within classes. The main experiments are a comparison
between these methods on an open sourced academic dataset. In the first experiment we
consider the full dataset. We also consider the given subsets of data separately, in order to
compare our results with state-of-the-art vendor solutions. In general we find that the SVM
models outperform the LSTM models. The former models achieve the highest macro-F1 for the
full dataset, and in most of the individual datasets. We also found out that the incorporation of
the hierarchical structure in the intents improves the performance.

THE INTRODUCTION Customer interaction is
at the center of many organizations. In order to
help customers efficiently, one could automate the
interaction between the organization’s represen-
tative and a customer. Customers usually contact
the organization with a specific request or query.
In order to help a customer, the intention of
the customer needs to be classified [1]. Intent
classification tries to answer the question why
the customer contacted the organization and what
the customer wants to achieve. The interaction
can partly or fully be automated using a dia-
logue system [2], which uses intent classification.

The classification can also be used to help the
human representatives, namely, by using intent
classification to direct the incoming messages to
the representative that has the right expertise.
Due to its importance for dialogue handling [3],
intent classification needs to be done properly.
Therefore, this research focuses on improving
the existing practice of intent classification for
dialogue utterances.

In order to classify intents of customers, a
dialogue system needs to analyze the incoming
messages. The messages are called utterances,
or acts-of-speech. In our case they are typed
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messages in English, roughly the length of a
sentence. The classification of the intent is made
per utterance. We analyze the case where possible
intents are disjoint. In other words, each incoming
message belongs to only one class. However,
some intents might be very similar and belong to
a common category, or in other words to a group
of intents. We explore the possibility of extending
the classifier with knowledge about the inherent
hierarchy of intents.

RELATED WORK
Previous studies have proposed several clas-

sification algorithms for short texts, starting with
parsimonious text classifiers, such as BoW with
NB and CBoW with SVM [4]. The performance
of NB is limited by the vocabulary in the training
set. SVM can circumvent this by using word
embeddings, trained on an external corpus. How-
ever, with both approaches, word order is lost.
To account for complex dependencies between
words in the representation of an utterance Re-
current Neural Networks were introduced [5].
Most recently, LSTMs and their simplification
Gated Recurrent Unit (GRU) have been used for
intent classification [6] and emotion detection [7],
respectively, in dialogues. Attentive LSTMs [8]
are less useful here as the classified text is rather
short in nature.

Flat classifiers need to distinguish between all
classes at once. When there is a large number
of classes, this can become difficult. Instead,
hierarchical classification can be used. A hierar-
chical classifier tries to incorporate the hierarchi-
cal structure of the class taxonomy. Hierarchical
classification was first used for text classification
by Koller and Sahami [9]. They used a local
classifier per parent node for training, at each
node selecting a subset of features relevant for
that step in the classification process. A similar
hierarchical structure with an SVM at every node
was used for speech-act classification [10]. Ono et
al. used a form of local classifier per level, where
they tried the lowest level (leaf nodes) first [11].
If the uncertainty is too high, they move up in
the hierarchical level. Hierarchical classifiers have
been used for intent classification in Web [12]
and platform [13] searches. For chatbots multi-
intent classification was researched by Rychalska
et al. [14].

We contribute to the existing literature in two
ways. First, we apply hierarchical intent classifi-
cation on dialogue utterances (in multi-class clas-
sification as apposed to multi-label). Secondly,
we present performances of machine learning
classifiers, alongside the black box models used
by Braun et al. [15].

METHODOLOGY
In this section we discuss the methods used

to classify intents. Each method is a combination
of an utterance representation and a classification
algorithm. We start with a formalization of the
problem. Then follow the flat classifiers. Finally,
we discuss the hierarchical classifier.

Intent Classification
The classification of an intent is answering

the question: What is the customer trying to
accomplish? In intent classification, the utterance
d ∈ X of a dialogue is given, where X is
the utterance space; a fixed set of predefined
intents C = {c1, . . . , cJ}; and a training set D
of labeled dialogue utterances {di, ci}Ni=1, where
(d, c) ∈ X×C. We consider the one-off problem
or in other words single label classification, where
each d corresponds to one element of C. For
example,

(d, c) = (

‘What software can I use to view epub

documents?’,

‘Software Recommendation’.

)

Flat Classifiers
BOW-NB. The first model we discuss is the

BoW representation with multinomial NB. This
model is the baseline in our experiments. Each
utterance is represented by the set of word counts
that occur in the utterance. Therefore, word order
is neglected. The way we implement NB is as
follows. First, we start by removing the stop
words. Secondly, we use lemmatization. Although
the combination of uni-gram and bi-gram is ad-
vised [4], we do not have enough bi-gram counts.
Therefore, we only use uni-grams. We handle
zero counts with Laplace smoothing.

An advantage of NB is its efficiency during
training time, as it only needs to pass through the
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data once. However, the downside of NB is the
conditional independence assumption, stating that
terms and the signal they carry are independent
of each other given the class. Furthermore, the
model uses the positional independence assump-
tion, stating the position of a word does not mat-
ter. Most importantly NB cannot handle unseen
words.

CBOW-SVM. Secondly, we discuss CBoW
as an input for SVM. CBoW uses continuous
word representations called word embeddings.
This gives the SVM classifier the advantage to
pick up signals from similar in meaning, yet
unseen, words. We use three word embeddings:
Word2Vec [16], GloVe [17], and FastText [18].

The CBoW representation is comparable to
the conventional bag-of-words representation,
since both lose the information of the order of
terms. However, using word embeddings gives
CBoW an advantage over traditional bag-of
words. Namely, CBoW can pick up signals from
previously unseen words. CBoW gives us the
additional advantage that the input for the classi-
fication algorithm is a fixed dimensional vector,
independent of the length of the utterance or
vocabulary. This is a desirable feature for SVMs.
There are two forms of CBoW we consider.
One takes the sum of the embedding vectors of
the respective terms, while the other takes the
average:

CBoWsum(t1, . . . , tk) =
k∑

i=1

v(ti), (1)

CBoWave(t1, . . . , tk) =
1

k

k∑
i=1

v(ti), (2)

where each feature ti corresponds to a word and
has an associated vector v(ti).

The intuition behind CBoW is as follows.
The summation of word vectors creates a path
in the word embedding space. The resulting vec-
tor (from the origin to the end of the path)
should capture a mathematical representation of
the overall meaning of the utterance. Adding
more words with the same meaning might spread
the cluster of the representations of a given intent,
possibly making the classification harder. When
the average is taken, the overall length of this
path is normalized with respect to the number of
words in the utterance.

SVMs are a classification method that uses a
kernel function to find decision boundary between
two classes that has a maximum margin in a
latent space. We consider both the Linear and
Radial Basis Function kernels. Since we allow
for misclassifications in the training set, a cost
parameter C is added to give a penalty to these
violations. In order to determine which kernel
and hyperparameters to use, we use 2-fold cross
validation with stratified sampling.

Inherently, SVMs are binary classifiers. Sev-
eral attempts have been made to create a multi-
class SVM scheme [19]. We use the one-against-
one [20] scheme, as it performed as one of the
best in the comparison of Hsu and Lin [19].
During testing we use Max Wins voting [21],
where the class with the highest number of votes
is chosen as final prediction. Since we are dealing
with unbalanced class distributions, we use class
weights in the SVM.

LSTM. The key feature of recurrent neural
networks (RNN) is that they can process sequen-
tial data, giving them the possibility to model
word dependencies. Parameter sharing enables
the recurrent network to pick up signals from
longer sequences than dense neural networks,
and to take inputs of arbitrary length and learn
general patterns across them. There are several
types of RNN architectures [22], we consider the
tail model. The tail model constructs a hidden
state by passing the complete sequence and using
the last hidden state as input for the classification
layer. Alternatives such as the pooling or hybrid
pooling do not consistently outperform the more
parsimonious tail model [22].

Gated RNNs are the most compelling se-
quence models used in practice. These include
networks based on the LSTM [23] and GRU [24].
Gated RNNs are based on the idea of creating
paths through time that have derivatives that nei-
ther vanish nor explode. This is done by learning
connection weights, and the ability to forget the
old state, from the data. We choose to use LSTMs
over GRUs due to the extra flexibility offered by
the controls for the update and output of the state.

Bidirectional LSTM (BiLSTM) was created to
model dependencies on the next time step in the
sequence [25]. They are a combination of a re-
current module that passes the sequence forward
through a memory block and a recurrent module
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that passes the sequence backwards through a
different memory block. The tail model uses a
concatenation of the final two hidden states as
input for the last layer.

Following similar work the network is trained
using the Adam optimizer [6]. We calculate
updates from the gradients based on batches
of training utterances. We use Back-Propagation
Through Time (BPTT) [26] to update recurrent
components. Gradient Clipping is used in order
to deal with exploding gradients and we found
that capping the gradients at 5 works well. We
use the following regularizers: early stopping,
ensembles, and weight noise. A popular way of
creating weight noise is by applying dropout. We
use dropout only at the non-recurrent connec-
tions [27]. The hyperparameters of the LSTM
model are the size of the input dimension, and the
size of the state variable. Both are determined by
2-fold cross validation using stratified sampling.

Hierarchical Classifiers
Hierarchical classification can be considered

as a classification that takes the hierarchical struc-
ture of the taxonomy of classes into account, as
opposed to a flat classifier, which only takes the
final classes into account. By imposing the hierar-
chical structure, the model does not need to learn
the separation between a large number of classes.
It can now focus on classifying subclasses within
a category. The taxonomy can be formalized as
a tree or a Directed Acyclical Graph [28], we
consider the case where the taxonomy is a tree
due to the nature of our data.

Our goal is to reduce the number of classes
considered based on the natural taxonomy, there-
fore we use a local classifier per parent node. This
local hierarchical classifier has a flat classifier at
every parent node, which means that the number
of classifiers that need to be constructed scales
directly with the number of parent nodes. During
training of a classifier at any given parent node,
only the observations belonging to its children are
considered. After training each individual classi-
fier, the local classifier can be used for inference.
During testing, the classification starts at the root
node. The outcome of the root node determines
which next classifier should be considered. The
outcome of this classifier selects the next classi-
fier to be used. This is repeated until a leaf node is

predicted, this then becomes the final prediction
of the local classifier.

Performance Measure
We measure the performance with the macro-

F1 score. The F1 score is a harmonic mean of
the precision and recall for each intent. We value
both and do not want a linear trade-off between
them. We are interested in the performance on
all classes equally, independent of the number
of test observations. Therefore, we aggregate the
measures by means of the macro average.

DATASET AND EXPERIMENTS
We use the dataset curated by Braun et

al. [15], available at https://github.com/sebischair.
It consists of two corpora, distinguished by the
way they were gathered. There is the Chatbot
Corpus on Travel Scheduling, and the StackEx-
change Corpus on Ask Ubuntu and Web Applica-
tions. In this section we discuss the experimental
setups on this dataset.

Complete Dataset. We start with the com-
plete set that includes all three subsets. This gives
us the opportunity to select the best overall model,
based on the macro-F1 score. The concatenation
of the three subsets imposes a hierarchy in the
taxonomy of intents. This allows us to compare
hierarchical classifiers with flat classifiers. The
class hierarchy is depicted in Figure 1.

Figure 1. Hierarchy of the classes with a local hierar-
chical classifier per parent node.

Individual Datasets. In this experiment we
consider the subsets of the data separately. This
gives us the possibility to compare our methods
with the classifiers used by Braun et al. [15].
They use the Natural Language Understanding
solutions of LUIS, Watson Conversation, API.ai,
and RASA.
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RESULTS
Complete Dataset. The results of the differ-

ent classifiers on the complete dataset are reported
in Table 1. The best performing flat classifier
is the SVM model, this is independent of the
type of word embedding or the method used to
aggregate the word embeddings. We select this
classifier as candidate for the hierarchical clas-
sifier. When adding hierarchy to the models, we
find varying results. The baseline model clearly
improves when taking the taxonomy of classes
into account, while adding the local hierarchy
to the SVMs comes with mixed results. For the
FastText embeddings it is a clear improvement,
while for the GloVe embeddings it is not. Overall,
the best hierarchical SVM outperforms the best
flat SVM.

Table 1. Macro-F1 for the test set on the complete dataset.
Model Flat Hierarchical
NB .541 .614
SVM FastText average .689 .782
SVM FastText sum .657 .642
SVM GloVe average .752 .654
SVM GloVe sum .680 .658
SVM Word2Vec average .705 .703
SVM Word2Vec sum .673 .706
LSTM FastText .605
BiLSTM FastText .569
LSTM GloVe .586
BiLSTM GloVe .575
LSTM Word2Vec .543
BiLSTM Word2Vec .502

With regard to the utterance representation
we find that averaging is better than summing
the word embeddings, as SVM with CBoWave

performs better in the flat classification and the
best hierarchical classifier uses also averages.
Furthermore we note that the bidirectional com-
ponent in the BiLSTMs does not capture more
information, as the LSTM performs better than
the BiLSTM. Together with the fact that the SVM
outperforms the LSTM, this indicates that taking
the word order into account is not relevant in this
dataset. This is likely due to the short utterance
length.

Individual Datasets. The macro-F1 for the
individual datasets are in Table 2. We note that it
is hard to interpret the comparison with Braun et
al. [15], as most of the methods used are black
boxes.

In the Travel Scheduling dataset, the
(Bi)LSTM with Word2Vec embeddings performs

Table 2. Macro-F1 score for the individual subsets; Travel
Scheduling (TS), Ask Ubuntu (AU), and Web Applications
(WA).

TS AU WA
NB .959 .726 .502
SVM FastText average .958 .812 .771
SVM FastText sum .968 .800 .658
SVM GloVe average .946 .805 .591
SVM GloVe sum .957 .729 .692
SVM Word2Vec average .979 .742 .698
SVM Word2Vec sum .946 .742 .680
LSTM FastText .968 .644 .465
BiLSTM FastText .979 .646 .549
LSTM GloVe .945 .665 .546
BiLSTM GloVe .979 .667 .635
LSTM Word2Vec .989 .631 .395
BiLSTM Word2Vec .989 .710 .443
LUIS .979 .743 .690
Watson .968 .819 .630
API.ai .931 .782 .628
RASA .979 .708 .494

the best. The SVM with Word2Vec and
CBoWave and BiLSTM perform equally well
as the intent classifiers of LUIS and RASA. We
note that the relatively high performance of our
baseline, NB, indicates that this is a relatively
easy set to classify.

The Ask Ubuntu set provides a slightly harder
classification task. In this set the intent classifier
of Watson outperforms the other vendor solutions
as well as all our models. From our models,
the SVM with FastText with CBoWave is the
best performing model. We note that all recurrent
neural networks are performing worse than the
NB baseline.

The final subset is on Web Applications.
The Web Applications data proves to be more
difficult, this is likely due to the fact that it
has very few training observations (an average
of less than 4 training observations per intent).
Here we see that our best performing model is
the SVM with FastText and CBoWave. Together
with the Word2Vec CBoWave and the GloVe
CBoWsum it outperforms the vendor solutions.
Furthermore, we note that the BiLSTM is the
best performing recurrent network, just as in the
Travel Scheduling and Ask Ubuntu sets. One
can note that on the complete dataset the LSTM
performed better than BiLSTM, as the LSTM has
an edge in differentiating between the three types
of datasets.
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CONCLUSION
In general we find that the SVM models

outperform the LSTM models. They achieve the
highest macro-F1 for the full dataset, they are
also able to handle the scenario of the individ-
ual datasets. With regard to taking advantage of
the hierarchical structure in the intents, we find
that the SVM with averaged FastText embed-
dings significantly benefits from the hierarchy
and outperforms all other models. Using word
embeddings as utterance representation yields a
better performance than using a count based
method. However, taking word order into account
does not. In general we see better results when
we take the element wise average of the word
embeddings, as apposed to the sum, indicating
that correcting for the length of the utterance is
useful. Finally, we note that our models improve
on the NB baseline. Furthermore, they are on par
with or improve on the performance of the black
box methods used by Braun et al. [15].

Future Research
There are different opportunities for future

work, we discuss a few below. We start with
several options with respect to the hierarchy, fol-
lowed by data augmentation and transfer learning.

The type of hierarchical model considered is
a local hierarchical classifier per parent node.
Alternatively a global hierarchical classifier could
be constructed by modifying a flat classifier to
take the taxonomy into account at once. The
intermediate certainties could be exploited by the
dialogue system, with specific follow-up ques-
tions.

In order to deal with the limited number
of training observations, future work could look
into data augmentation or transfer learning. Data
augmentation could be used by interchanging one
or multiple random words with their synonyms.
Alternatively, transfer learning can be used. One
could take a subset of intents, starting with 2 in-
tents, training the classifier and using the inferred
weights as initialization when learning to classify
with an additional intent added to the problem.
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