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Abstract

Syntactic processing techniques are the foundation of Natural Language Pro-
cessing (NLP), supporting many downstream NLP tasks. In this paper, we
conduct pair-wise Multi-Task Learning (MTL) on syntactic tasks with differ-
ent granularity, namely Sentence Boundary Detection (SBD), text chunking, and
Part-of-Speech(PoS) tagging, so as to investigate the extent to which they com-
plement each other. We propose a novel soft parameter sharing mechanism to
share local and global dependency information that is learned from both target
tasks. We also propose a Curriculum Learning (CL) mechanism to improve MTL
with non-parallel labeled data. Using non-parallel labeled data in MTL is a com-
mon practice, whereas it has not received enough attention before. For example,
our employed PoS tagging data do not have text chunking labels. When learn-
ing PoS tagging and text chunking together, the proposed CL mechanism aims
to select complementary samples from the two tasks to update the parameters of
the MTL model in the same training batch. Such a method yields better perfor-
mance and learning stability. We conclude that the fine-grained tasks can provide
complementary features to coarse-grained ones, while the most coarse-grained
task, SBD, provides useful information for the most fine-grained one, PoS tag-
ging. Additionally, the text chunking task achieves state-of-the-art performance
when joint learning with PoS tagging. Our analytical experiments also show the
effectiveness of the proposed soft parameter sharing and CL mechanisms.

Keywords: Text chunking, Part-of-speech tagging, Sentence Boundary Detection,
Multi-task learning, Granularity computing, Curriculum learning
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Fig. 1 An example that showcases the PoS, chunk, sentence boundary labels of a given sentence.
The PoS tagging labels employ the Penn Treebank [27] annotation schema. The chunk labels employ
BIOES annotation schema [28], where “B” represents the beginning of a chunk that immediately
follows another chunk; “I” represents the word is inside a chunk; “O” represents outside of any
chunk; “E” represents the ending word of a chunk; “S” represents a chunk phrase that contains only
a single token. The sentence boundary word is labeled as PERIOD, following the tagging schema of
the IWSLT dataset [29]. Note that there are no punctuation marks in the IWSLT dataset.

1 Introduction

Syntactic processing is a generalization of natural language processing (NLP) subtasks
that are concerned with the structure of phrases and sentences, as well as the relation
of words to each other within the phrase or sentence [1]. There is a multitude in
the granularity of syntactic processing. For instance, Sentence Boundary Detection
(SBD), text chunking, and Part-of-Speech (PoS) tagging are all fundamental syntactic
tasks, ranging from coarse-grained to fine-grained. The interplay between these tasks
ensures a granular understanding of the syntactic and structural aspects of natural
language, enabling more sophisticated language processing applications [2]. SBD aims
to distinguish where sentences begin and end in raw texts. Downstream tasks such
as machine translation [3, 4], information retrieval [5], and document summarization
[6, 7] rely on predetermined sentence boundaries for good performance. In sentiment
analysis, SBD can help identify negation scope to improve the performance [8]. Text
chunking splits sentences into non-overlapping segments, such as Noun Phrase (NP)
and Verb Phrase (VP). It helps to understand a sentence structure and the relation
between words, e.g., recognizing names and syntactic components. It supports Natural
Language Processing (NLP) tasks that require a general understanding of sentence
components, such as text summarization [9] and sentiment analysis [10]. PoS tagging
aims to label each word in a given text with its PoS tag, e.g., noun, verb, adjective,
adverb, etc. It parses input text to assist downstream tasks, including syntactic tasks,
e.g., text chunking [11, 12] and dependency parsing [13, 14], as well as high-level NLP
tasks, e.g., information retrieval [15] and sentiment analysis [16, 17], and metaphor
interpretation [18–20]. These three tasks are all commonly regarded as a sequence
labeling problem. Figure 1 shows an example of the different task labels given an input
sentence.

Although current works have achieved very high accuracy on these tasks [21–
23], these fundamental tasks are still worth investigating for the improvement of
downstream applications. However, there has been limited research on how syntactic
tasks of different granularity affect each other. In traditional feature-engineering-based
approaches, PoS tags are commonly used as input features for coarser-grained syntactic
tasks including SBD and text chunking [24]. Modern neural-network-based techniques
such as multi-task learning (MTL) [11, 25] and transfer learning [26] also show that
PoS tagging is a complimentary task for text chunking, but the reverse is inconclusive.
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In this work, we conduct pair-wise MTL on SBD, text chunking, and PoS tagging
respectively to study the correlations between task granularity and the complementary
effect to each other. The adoption MTL is motivated by the advantage of joint learning
to mitigate the error propagation problem [30]. We propose an effective local and
global dependency sharing (LGDS) mechanism. This is inspired by the finding in MTL
that soft parameter sharing allows task-specific towers to absorb useful features that
are learned from their neighbour towers [31, 32].

The employed PoS tagging dataset Wall Street Journal (WSJ) [27], text chunking
dataset CoNLL 2000 (CoNLL00) [33], and SBD dataset IWSLT [29] have different
labels. In the case of CoNLL00, chunking, PoS, and sentence boundary labels are
present. Thus, an MTL model can be trained with parallel labeled data. That is,
given an input with corresponding sets of ground-truth labels for the two tasks, the
model can update the parameters of the task-specific towers simultaneously. On the
other hand, the WSJ dataset lacks annotated chunk labels, and the IWSLT dataset is
limited to sentence boundary labels. This poses a challenge for employing MTL. For
instance, in MTL for chunking and PoS tagging, the model, when presented with a
WSJ training sample, cannot simultaneously update both task towers. This scenario
is termed training with non-parallel labeled data in our MTL paradigm. Addressing
MTL with non-parallel labeled data is significant, as optimizing a neural network-
based model on input instances with non-parallel labels may introduce bias toward
a specific task, potentially causing instability in the training of the other task. For
example, a WSJ input instance optimizes the parameters by its associated PoS labels.
As such, the neural network tends to yield PoS-tagging-efficient parameters and lower
the accuracy of text chunking. MTL with non-parallel labeled data is a common MTL
paradigm, however, previous research did not pay enough attention on this [34, 35].

To address this challenge, we propose to incorporate parallel labeled data to
balance the biased learning on non-parallel labeled data, assuming that a strategic
combination of two instances can achieve effective learning for both tasks at each batch
training step. To this end, we present a Curriculum Learning (CL) mechanism that
selects complementary training instances from both datasets to be packed in the same
training batch. The hypothesis (H1) is that a model can achieve more robust MTL
with non-parallel labeled data, if the task-encoded input instances from two different
datasets are in similar vector spaces. We use cross-entropy to measure the similarity
between two vector spaces to select complementary samples, because cross-entropy
is a classic and intuitive measure for quantifying the information difference between
two probability distributions [36]. We select and train the pair of instances from two
datasets in a same batch by the curriculum criterion of minimizing the cross-entropy
of the hidden states from two task-specific towers.

We examine the pair-wise performance of SBD, chunking, and PoS tagging on our
MTL model using three public datasets, and study how syntactic tasks of different
granularity affect each other. The text chunking task obtains impressive performance
when jointly learned with PoS tagging, achieving state-of-the-art performance (98.43%
Micro-F1), outperforming the strongest published baseline by 1.13%. The PoS tagging
task and SBD task both demonstrate performance gains when MTL with each other,
compared to when MTL with chunking. It may be concluded that, pair-wise MTL
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among syntactic tasks of different granularity can bring performance gain compared
to single-task learning. Nevertheless, fine-grained task such as PoS tagging tend to be
more helpful for coarse-grained tasks. Whereas coarse-grained task, i.e., SBD, provides
useful structural information for PoS tagging. We also conduct an ablation study to
demonstrate the effectiveness of our proposed LGDS and CL mechanisms.

Our research scope does not target to achieve state-of-the-art performance for
all the involved tasks. Instead, we aim to propose a MTL framework where the the
complementary effects between syntactic tasks of different granularity can be reliably
evaluated using their respective benchmark datasets. Thus, the contribution of this
work can be summarized as: (1) We propose an MTL framework with a novel soft
parameter sharing mechanism that shares local and global dependency information for
sequence-labeling-based syntactic processing tasks; (2) We propose a CL mechanism
to improve the stability of the loss convergence for MTL with non-parallel-labeled
data; (3) We study how syntactic tasks with different granularity complement each
other through pair-wise MTL.

2 Related Work

2.1 Sentence Boundary Detection

SBD is an important yet overlooked pre-processing task. It is seemingly easy through
identifying punctuation marks. However, the presence of period may cause notable
ambiguities, e.g., abbreviations and decimal points. Early methods focus on the dis-
ambiguation of period usage in text. Recent task definition, motivated by automatic
speech recognition, becomes more challenging by aiming to classify whether a word
is followed by a sentence boundary punctuation mark in unsegmented speech tran-
scripts [29]. Rule-based approach [37–39], despite the difficulties of constructing a
comprehensive enough rule set, is still employed in recent years and achieves compet-
itive performance. Whereas deep learning approaches [40–42] is the most widely used
for the SBD task nowadays. Notably, early feature engineering methods often incor-
porate PoS tags as a useful feature for SBD [43–45], which suggests that PoS tagging
might be a complementary joint learning task for SBD.

2.2 Text Chunking

Text chunking is normally formulated as a sequence labeling task since the work
of Ramshaw and Marcus [46]. Early feature engineering methods utilized graph-
ical models, e.g., Conditional Random Fields (CRF) [47–50]. In the era of deep
learning, recent works utilized neural networks to automatically capture relevant fea-
tures. The most widely-used architecture is the combination of CRF and Recurrent
Neural Network (RNN) variants such as Bidirectional Long Short-Term Memory (BiL-
STM) [21, 51–53] and Gated Recurrent Units (GRU) [54]. However, there is no study
on the effectiveness of learning both tasks with dependency information sharing. We
believe that PoS dependency features are useful for chunking.
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2.3 Part-of-Speech Tagging

PoS tagging is a well-studied problem. Similar to text chunking, most feature engineer-
ing methods utilized graphical models [55–57], whereas Convolutional Neural Network
(CNN) [58–60] and the abovementioned RNN variants are used to learn features
nowadays. The accuracy of PoS tagging has been pushed to its near limit. Hence,
improvement of this task should prioritize its effectiveness on aiding downstream tasks.

2.4 Multi-task Learning

MTL takes the advantage of sharing parameters and learns features from two or more
tasks. It helps a machine improve performance and mitigate overfitting [61]. There has
been studies where MTL is applied to multiple syntactic and semantic tasks [11, 25],
e.g., PoS tagging, text chunking, name entity recognition, and semantic role labeling.
However, the motivation behind task selection stems from similar task formulation
(sequence labeling), instead of linguistic granularity. As such, the tasks involved are
jointly learned together indiscriminately, and their complementarity to each other is
not explored.

Furthermore, there are only a few studies that effectively address the non-parallel
labeled data learning issue in MTL [35]. Chen et al. [25], Liu et al. [62] proposed
LSTM-based architectures that can handle non-parallel labeled data by using a shared
LSTM layer between two task towers. Their limitation is that such approach is more
suitable for highly similar tasks, e.g., sentiment classification tasks in different domains
or annotations. Similarly, Zhao et al. [63] employed shared stacked Bi-LSTM-CNNs
with inter-task feedback strategy to adopt hierarchical tasks for parallel multi-task
learning. However, such architecture runs the risk of biasing towards one task when
the volume of task datasets are imbalanced.

2.5 Curriculum Learning

CL aims to automatically select the most suitable samples for each training step [64].
The curriculum is a sequence of training criteria that rely solely on the data, the
model, and the task objective. CL is widely used to select training samples from easy
to difficult for efficient learning [65–67]. However, to the best of our knowledge, CL
has not been used to address the issue of MTL with non-parallel labeled data.

3 Methodology

We conduct pair-wise MTL on three syntactic processing tasks, namely, SBD, text
chunking, and PoS tagging. Our hypothesis is that syntactic tasks of varying granular-
ity tend to display different level of compatibility with one other. We also hypothesize
that by controlling the combination of input data from different sources without
parallel-annotated labels, an MTL model can achieve higher overall accuracy and
smooth learning loss convergence. This is because the feature-alignment of multiple
task inputs can help the neural network learn features from similar spaces. In contrast,
features from very different spaces may lead to unstable learning. This is particularly
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Fig. 2 Architecture of the multitask learning framework. σ denotes a SoftMax function.

important for MTL in the context where the sub-tasks do not have parallel labels for
the same input sentence.

In light of this, we propose an MTL framework (the first subsection) with a novel
soft parameter sharing mechanism to pass linguistic features learned from one task to
the other, so as to investigate the pair-wise complementarity of the involved syntactic
tasks. The soft parameter sharing mechanism (LGDS in the second subsection) means
to share local and global dependency information between two tasks. Meanwhile, given
the fact that some task datasets do not have ground-truth labels for the other target
task, e.g., the SBD dataset not having PoS labels nor chunk labels, we introduce a CL
mechanism (the third subsection) to improve the accuracy and learning stabilization
by controlling the combination of input data from both tasks in the same batch.

3.1 Multi-task Learning

We denote the two tasks involved in our MTL framework as p and c, respectively.
Then, given an input sentence w = (w1, w2, . . . , wl), the goal of the MTL model is to
predict its task p labels p = (p1, p2, . . . , pl) and its task c labels c = (c1, c2, . . . , cl),
where l is the sequence length.
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The architecture of the model is shown in Figure 2. The input sentence w is first
embedded with pre-trained embeddings, then fed into the two respective towers for
task p and task c. In each tower, the input is passed through an encoder (Encoder0),
whose output is denoted as Hp

0 in the task p tower and Hc
0 in the task c tower. In this

work, we adopt Transformer [68] as the encoder, because it has been widely applied
in diverse NLP tasks, presenting strong performance [69, 70].

Next, n blocks of encoders and soft parameter sharing mechanisms (LGDS) are
employed. Here, we denote the output of block i in the task p tower as Hp

i , and the
one in the task c tower as Hc

i . Then, for the task p tower, Hp
i is given by

T p
i = Encoderpi (H

p
i−1), (1)

Hp
i = LGDSp

i (T
p
i , H

c
i−1). (2)

For the task c tower, Hc
i is computed similarly to Equation 2 by incorporating Hp

i−1

through LGDS.
Next, the final hidden states Hp

n and Hc
n are each fed into a linear layer (Ln+1(·))

with SoftMax (σ):

Ep = σ(Lp
n+1(H

p
n)), (3)

Ec = σ(Lc
n+1(H

c
n)). (4)

Finally, during training, we use Ep, Ec, CRF and its loss function [57] to obtain
losses for task p (Lp) and task c (Lc), respectively. The overall loss (L) is given by

L = αLp + (1− α)Lc, (5)

where α is a hyper-parameter. During inference, Viterbi decoding algorithm [71] is
employed in CRF to predict the label sequences of task p and task c.

3.2 Local and Global Dependency Sharing

We propose a soft parameter sharing mechanism named LGDS to incorporate local
and global dependencies that are learned from both tasks. As shown in Figure 3, LGDS
combines CNN and Biaffine attention [13]. CNN, constricted by window size, is used
to extract relevant information from the neighbour tower within the local context of
the focal token. The output of the CNN in block i of the task c tower Kc

i can be
computed as

Kc′

i =ReLU(Conv1D(Hp
i−1, f = 1)

⊕ Conv1D(Hp
i−1, f = 3)

⊕ Conv1D(Hp
i−1, f = 5)),

(6)

Kc
i = tanh(WkK

c′

i + bk), (7)

where ⊕ denotes concatenation. f denotes for filter width. Wk and bk are learnable
parameters.
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Fig. 3 Local and global dependency sharing (LGDS) mechanism. Bold italics denotes input and
output variables, where black denotes the variables for learning task c, red with parentheses denotes
variable for learning task p. Colored boxes denote layers with learnable parameters. + denotes a plus;
⊕ denotes concatenation; ⊗ denotes matrix multiplication.

Biaffine attention was used in dependency parsing to capture the dependencies
between each word of a sentence [13]. Thus, we use Biaffine attention to capture the
long-range dependencies. A Biaffine attention matrix (Sc

i ∈ Rl×l) in block i of task c
is computed by

Sc
i = T c

i U
c
i H

p⊤
i−1 +Hp

i−1e
c
i , (8)

where U c
i and eci are learnable parameters. The Biaffine attention output (Bc

i ) is the
task p information (Hp

i−1) enhanced by its global task-c-dependent information (Sc
i )

Bc
i = tahn(softmax(Sc

i )H
p
i−1). (9)

Finally, the LGDS output of the current block i from the task c tower (Hc
i ) is computed

as
Hc

i = Lc
i (T

c
i ⊕ (Kc

i +Bc
i )). (10)

The output for the LGDS in the task p tower (Hp
i ) can be derived from similar

procedures, while the input from the private tower is T p
i instead of T c

i ; the input from
the neighbour tower is Hc

i−1.
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3.3 Curriculum Learning

The benchmark dataset for one task might not contain ground-truth labels for the
other task, e.g., the PoS tagging dataset (WSJ) not being annotated with chunk labels,
causing a non-parallel labeled data MTL issue. To alleviate this, we propose a CL
mechanism to select complementary samples from the other task’s dataset to optimize
the training on the non-parallel-labeled task’s data. Using the MTL of chunking and
PoS tagging as an example, for an input WSJ instance (wp,m), we randomly select
J instances from CoNLL00 to feed into the model together for forward propagation.
The length of wp,m is l. The CoNLL00 instances are padded or pruned to achieve the
same length (l) in vector space. We denote the output of the first chunking encoder
(Encoderc0) resulting from the j-th CoNLL00 instance as T c,j

0 , (j ∈ {1, . . . , J}). Subse-
quently, we select the CoNLL00 instance whose T c,j

0 is the most similar to T p,m
0 (given

by wp,m and Encoderp0) in vector space to balance the learning of wp,m, according to
cross-entropy

wc∗ = argmin
j

(−
l∑

k=1

T p,m
0,k log(T c,j

0,k)). (11)

wc∗ and wp,m are learned with both forward and backward propagation in the same
batch to achieve stable CL for text chunking. We use hidden states from Encoderc0
and Encoderp0 rather than task losses as signals, because minimizing losses does not
allow the model to learn useful information from the current input.

Similarly, we apply this CL procedure on the SBD dataset (IWSLT) when training
with PoS tagging or text chunking, as it does not contain ground-truth labels for either
task. We do not apply the CL mechanism when training on parallel annotated data,
e.g., CoNLL00 with both chunking, PoS and SBD labels, and WSJ with both PoS and
SBD labels.

4 Experiment

4.1 Baselines

To put the performance of our MTL framework into perspective, we include the
following single task and multi-task baselines.

SBD:

• T-BRNN [72]: A bidirectional GRU model with attention mechanism, using GloVe
embeddings.

• BERT [41]: A BERT-large model with Bi-LSTM-CRF stacked on top.
• Roberta [42]: A Roberta-large model with Bi-LSTM-CRF stacked on top.

Text chunking:

• GRU-CRF [54]: A deep hierarchical GRU model that encodes both character level
and word level information, using fine-tuned SENNA embedding [11].

• Star-C [73]: A Star-Transformer-CRF model using GloVe embedding [74].
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Table 1 Details of the WSJ, CoNLL 2000, and IWSLT
datasets.

Dataset Task Data # seq. # token

IWSLT SBD
Train - 2,102,417
Dev. - 295,800
Test - 12,626

CoNLL 2022 Chunking
Train 8,937 211,727
Test 2,013 47,377

WSJ PoS tagging
Train 38,219 912,344
Dev. 5,527 131,768
Test 5,462 129,654

• MVCRF [12]: A multi-view CRF that extracts features from the word view as well
as POS view, using SENNA embedding. Flair-C [21]: A BiLSTM-CRF model that
utilizes Flair embedding, GloVe embedding and task-trained character embedding.

• ACE [22]: A BiLSTM-CRF model that automatically concatenates suitable embed-
dings including GloVe, Flair, BERT[75], etc.

POS tagging:

• LSTM-CNN-CRF [59]: A BiLSTM-CRF model that uses CNN to extract char-
acter level features, using GloVe embedding and task-trained character embedding.

• GatedDualCNN [60]: A deep CNN architecture that employs a dual path to
alleviate the vanishing gradient problem, using GloVe embedding and task-trained
character embedding.

• Star-P [73]: Same as Star-C.
• Flair-P [21]: Same as Flair-C.

MTL:

• Meta-LSTM [25]: A MTL framework with a task-shared Meta-LSTM layer for
non-parallel labeled data, using GloVe embedding.

• Gated [76]: A MTL model with gated network as sharing mechanism using BERT
embedding.

• AUX [77]: A BiLSTM-based model that concatenates the output of the auxiliary
tower with input representation to feed into the primary tower.

We also conduct experiments by using BiLSTM instead of Transformer in our
framework (Ours-LSTM) to achieve a fair comparison with other BiLSTM-CRF-
based baselines.

4.2 Datasets

Our multitask learning framework is trained and evaluated with the WSJ dataset [78],
the CoNLL00 dataset [33], and the IWSLT dataset [29]. The details of the used
datasets can be found in Table 1. For the SDB task, we use the PERIOD class tagging
schema provided by the IWSLT dataset [29], and use the Ref testing set for evaluation.
For the chunking task, we use the BIOES tagging schema [28]. For the POS tagging
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Table 2 SBD results when learning with PoS tagging (SBD
w/ PoS) and with chunking (SBD w/ Chunking). The F1 scores
of the single-task learning baselines as shown under the SBD
w/ PoS column for readability. The bold and underlines denote
the best and second best results. The numbers on the subscripts
are standard deviations. * indicates the models re-implemented
by us. w/CL means our CL mechanism is applied.

Model
SBD w/ PoS SBD w/ Chunking
F1 Acc F1 Acc

T-BRNN 72.9 - - -
BERT 84.1 - - -
Roberta 88.6 - - -
Gated* 81.31 81.42 79.22 79.53
Gated w/CL* 81.58 81.64 79.69 79.88
AUX* 79.99 80.28 78.93 79.41
AUX w/CL* 80.46 80.61 79.18 79.52
Ours-LSTM 86.74 87.01 84.43 84.86
Ours-Transformer 87.25 87.48 85.82 85.95

task, we use the Penn Treebank annotation schema [27]. The standard evaluation met-
rics are accuracy for POS tagging, F1 measure for text chunking, and PERIOD class
F1 measure [29] for SBD, which are in line with our baselines.

4.3 Setups

For the hyper-parameters, we randomly select J = 4 chunking instances for CL. We
adopt α = 0.6. We set the initial learning rate to 0.0001, and adopt a learning schedule
with the step size of 20 and decay factor γ = 0.5. We also adapt an early stop strategy,
where the model stops training if the overall accuracy of the two tasks is not improved
in five epochs. We use Adam [79] to optimize the model. We run 30 epochs with
the batch size of 20 on NVIDIA Tesla P100-PCI-E. We use Flair embedding, GloVe
embedding, and task-trained character embedding as embeddings, aligning with one
of the strongest baselines for two of the target tasks [21]. There are 2 blocks (n=2
in Figure 2) of encoder with LGDS in each task specific tower. The Transformer-
based encoders have 4 heads, 128 dimension hidden states. Additionally, we examine
BiLSTM-based encoders with 200 dimension hidden states. We report micro-F1 and
accuracy for both text chunking and PoS tagging tasks, based on the averaged results
of 5 runs.

5 Results

From Table 2, we can see that jointly learning SBD with PoS tagging outperforms that
with text chunking by 2.02% F1 score. Such a performance advantage can be observed
in all the MTL methods, indicating that PoS tagging is a more complementary task for
SBD than chunking. Additionally, Ours-Transformer outperforms BERT in both task
pair settings, and only falls behind Roberta by 1.35% F1 score when paring with PoS
tagging, despite using fewer Transformer layers than both baselines. It shows that our
MTL framework can pass useful features from one task tower to the other and glean
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Table 3 Text chunking results when MTL with PoS tagging
(Chunking w/ PoS) and with SBD (Chunking w/ SBD). The F1
scores of the single-task learning baselines as shown under the
Chunking w/ PoS column for readability. The bold and underlines
denote the best and second best results. The numbers on the
subscripts are standard deviations. * indicates the models
re-implemented by us. w/CL means our CL mechanism is applied.

Model
Chunking w/ PoS Chunking w/ SBD
F1 Acc F1 Acc

GRU-CRF 95.41 - - -
MVCRF 95.44 - - -
Star-C 95.93 - - -
Flair-C 96.72 - - -
ACE 97.3 - - -
Meta 95.11 - - -
Gated* 97.50 97.63 97.11 97.36
Gated w/CL* 97.82 97.94 97.23 97.51
AUX* 97.18 97.51 96.69 96.83
AUX w/CL* 97.52 97.86 96.80 96.98
Ours-LSTM 97.96 98.04 97.40 97.73
Ours-Transformer 98.13 98.45 97.48 97.98

the benefits of joint learning. Applying our proposed CL mechanism also consistently
improve the MTL baselines Gated and AUX in both task pair settings, proving its
effectiveness in bringing performance gain.

Results shown in Table 3 indicate that text chunking achieves the best performance
when jointly learned with PoS tagging. Although outperforming the best single-
task baseline (ACE) when learned with SBD, the extend of improvement, 0.18%, is
much less significant comparing to when learned with PoS tagging, which stands at
0.83%. This contrast of complementarity can also be observed among all the experi-
mented MTL methods. We can also see that when jointly learned with PoS tagging,
Ours-LSTM outperforms the LSTM-based ACE by 0.66% in F1 scores. It shows the
effectiveness of our proposed MTL task pair, soft parameter sharing (LGDS) and CL
mechanisms. Using Transformer can further improve the model, reaching 98.13% F1,
achieving the best performance. It significantly outperforms Meta, showing that our
approach for non-parallel labeled data in MTL is superior to existing works.

From results shown in Tables 2 and 4, we can conclude that our model achieves the
best PoS tagging and SBD performance when they are jointly learned, whereas Table 3
and 4 indicate that chunking can benefit a lot from PoS tagging but not in reverse.
It can be inferred that fine-grained syntactic tasks are complementary for MTL with
the more coarse-grained ones, among which the most fine-grained task, namely PoS
tagging, consistently contributes the most to the improvement of the other tasks. On
the other hand, PoS tagging receives limited benefits from MTL with more coarse-
grained tasks. Jointly learning PoS tagging with SBD achieves better performance than
with chunking, and comparable performance with the strongest single-task baseline.
This might be due to the fact that SBD provides global sequence structure information,
but is more challenging to learn in the fine-coarse processing of PoS tagging.
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Table 4 PoS tagging results when learning with SBD
(PoS w/ SBD) and with chunking (PoS w/ chunk). The
accuracy of the single-task learning baselines as shown
under the PoS w/ SBD column for readability. The bold
and underlines denote the best and second best results.
The numbers on the subscripts are standard deviations. *
indicates the models re-implemented by us. w/CL means
our CL mechanism is applied.

Model
PoS w/ SBD PoS w/ chunk
F1 Acc F1 Acc

LSTM-CNN-CRF - 97.55 - -
GatedDualCNN - 97.59 - -
Star-P - 97.68 - -
Flair-P - 97.85 - -
Meta - - - 97.45
Gated* 97.67 97.64 97.47 97.40
Gated w/CL* 97.74 97.70 97.60 97.52
AUX* 97.61 97.59 97.60 97.53
AUX w/CL* 97.71 97.66 97.62 97.56
Ours-LSTM 97.78 97.70 97.58 97.52
Ours-Transformer 97.86 97.79 97.64 97.59

Combining the results in Tables 2, 3, and 4, we can further draw the conclusions
that, 1) when paired with the most complementary task, Our-Transformer significantly
outperforms the strongest baseline in text chunking, and obtains comparable perfor-
mance in SBD and PoS tagging; 2) applying our proposed CL mechanism consistently
bring significant improvement to the MTL baselines in all experiment settings, indi-
cating its robustness. Based on the former observation, Our-Transformer is our main
model of investigation in the following experiments.

5.1 Ablation Study

We conduct an ablation study using the best performing MTL setups for each task,
reported in Tables 2, 3, and 4, i.e., chunking paired with PoS tagging, and PoS tagging
and SBD paired together. Specially, the following variants are studied:

• w/o MTL denotes that the two target tasks are trained on the base tower structure
of Transformer encoders and CRF using single-task learning.

• w/o LGDS denotes a hard parameter sharing model without LGDS and CL, where
the two tasks share the same encoder layers and keep individual output layers.

• Finetune denotes pre-training the task tower without parallel labels using its corre-
sponding dataset first, then fine-tuning the two task towers with the parallel labeled
dataset.

• w/o CL denotes that chunking and PoS tagging are trained on the proposed LGDS-
based MTL architecture without CL.

• w/o non-parallel denotes a w/o CL model that is trained solely on parallel labeled
dataset, but is evaluated on testing sets of both tasks.

As seen in Table 5, a hard parameter sharing MTL model without LGDS
(w/o LGDS) yields higher performance than the single task learning model (w/o MTL)
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Table 5 Ablation study results. Chunking w/ PoS denotes chunking results when
paired with PoS tagging. PoS w/ SBD denotes PoS tagging results when paired
with SBD. SBD w/ PoS denotes SBD results when paired with PoS tagging.

Model
Chunking w/ PoS PoS w/ SBD SBD w/ PoS
F1 Acc F1 Acc F1 Acc

w/o MTL 95.77 96.64 97.51 97.46 85.04 85.18
w/o LGDS 96.47 97.20 97.61 97.55 86.42 86.57
Finetune 97.21 97.38 97.10 96.84 81.97 82.22
w/o CL 97.71 98.24 97.77 97.68 87.16 87.32

w/o non-parallel 97.35 97.96 96.32 96.33 79.98 80.26
Ours-Transformer 98.13 98.45 97.86 97.79 87.25 87.48

on all three tasks. Further comparisons between the performance of w/o MTL and
Ours-Transformer in Tables 3, 4, and 2 show that all pair-wise MTL combinations per-
form better than the single task counterparts. This shows that joint training between
syntactic tasks can provide useful features for each other. Learning multiple tasks
simultaneously can also help the model against overfitting [61], because the model
needs to learn robust representations to achieve the training targets of both tasks. The
improvements of w/o CL over w/o LGDS are consistent across the three tasks, showing
the effectiveness of our proposed soft parameter sharing mechanism and layer con-
nections. Comparing the performance of Finetune with w/o CL and Our-Transformer
on the three tasks, we can conclude that fine-tuning cannot achieve stable learning
for MTL. Next, there is a sharp drop on SBD performance by simply using the WSJ
dataset for joint learning with PoS tagging (w/o non-parallel). As a result, the PoS
tagging performance also decreases. The same reason can be inferred to be responsible
for the performance degradation of Chunking w/ PoS when solely using the CoNLL00
training set for the MTL of text chunking and PoS tagging. This shows the signif-
icance of introducing data from both tasks to support the pair-wise MTL. Finally,
using the proposed LGDS, training strategies, and CL mechanism can help the model
achieve further improvements on the three tasks, which is evidenced by the consistent
improvements of Ours-Transformer over w/o CL and w/o WSJ models across different
tasks.

5.2 Curriculum Learning Analysis

Figure 4 shows the loss curves of SBD and PoS tagging in pair-wise MTL, given by
CL-4 (Figure 4a) and CL-1 (Figure 4b), respectively. CL-1 denotes that we randomly
sample the equal number of instances from both task datasets in a batch without using
any sample selection criterion. CL-4 employs our recommended CL sample size and
sample selection criterion. Similarly, Figure 5 shows the loss curves of PoS tagging and
text chunking, and Figure 6 the curves of SBD and chunking in pair-wise MTL. It can
be observed in Figure 4 that the fluctuation of the PoS tagging loss curve of CL-4 is
less than those of CL-1 (the blue lines). The same can be seen in the SBD curves (the
green lines), albeit to a smaller extent. It shows that our proposed curriculum criterion
(Eq. 11) is effective in selecting complementary PoS tagging instances to optimize and
stabilize the learning of both PoS tagging and SBD. Such smoothing effect can also be
observed in Figures 5 and 6 for the chunking loss curves (the red lines). The difference
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Fig. 4 Loss curves of SBD and PoS tagging, given by (a) our proposed CL mechanism with a sample
size in 4; (b) the CL mechanism with a sample size in 1.

Table 6 Curriculum learning sample size
analysis by time costs and overall accuracy
gains. Underlines denote baselines.

Setup Time costs ∆ Avg acc
w/o CL 0.86X -0.03 97.70
CL-1 1.00X - 97.73
CL-2 1.08X +0.15 97.88
CL-4 1.31X +0.24 97.97
CL-8 1.74X +0.26 97.99

of PoS tagging loss curves (the blue lines) in the two figures is not conspicuous, as
does the difference of SBD loss curves (the green lines). It might be that the learning
of chunking does not cause significant biases for that of PoS tagging nor SBD. The
comparatively stable loss curves in CL-4 (Figures 4a, 5a, and 6a) prove our hypothesis
(H1 in introduction) that a model can achieve more robust MTL with non-parallel
labeled data, if input instances from two different tasks are in similar vector spaces.

We further analyze the tradeoff between time costs and performance using text
chunking and PoS tagging as a case study in Table 6. We use the averaged accuracy
of chunking and PoS tagging as the overall accuracy measure, because our early stop
point is determined by the condition that the highest overall accuracy (the sum of
text chunking and PoS tagging accuracy) is not improved in 5 training epochs. We
use the CL sample size of 1 (CL-1) as the time baseline, which means we randomly
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(b)(a)

Fig. 5 Loss curves of PoS tagging and text chunking, given by (a) our proposed CL mechanism with
a sample size in 4; (b) the CL mechanism with a sample size in 1.

sample a CoNLL00 instance to learn with a WSJ instance; CL-2 means the random
sample size is 2, and so on. The accuracy shows an upper trend as the sample size
grows. However, the time costs also increase, because the model needs to compute and
compare more cross-entropy of hidden states when the sample size is larger. The CL
improvements in different setups are marginal in our full model, because the model
with LGDS and without CL (w/o CL) has achieved very high accuracy in both tasks.
Improving model performance is very hard, given the w/o CL baseline has yielded an
average accuracy by 97.70%. Compared with the improvement space (2.30%) to the
ground-truth (100%), the gap (0.27%) between CL-4 (97.97%) and w/o CL (97.70%)
and the gap (0.24%) between CL-4 (97.97%) and CL-1 (97.73%) are reasonable.

6 Conclusion

In this work, we propose a soft parameter sharing mechanism to share dependency
information that is learned from the two involved tasks in pair-wise MTL. It consists
of CNN and Biaffine attention to capture local and global dependency, respectively.
Additionally, we propose a CL mechanism to achieve robust MTL with non-parallel
labeled data. The addition of CL mitigates the learning bias given by the task with
non-parallel data, so that the performance of both tasks may further improve. The
employed curriculum criterion enables effective selection of complementary data, so
that the learning loss of the tasks involved can converge more steadily.

Using the proposed MTL method, we conduct a study on how syntactic tasks
of different granularity complement each other through pair-wise MTL. We conclude
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Fig. 6 Loss curves of SBD and text chunking, given by (a) our proposed CL mechanism with a
sample size in 4; (b) the CL mechanism with a sample size in 1.

that fine-grained tasks can provide information that yield significant gains for coarse-
grained tasks. On the other hand, the benefits that coarse-grained tasks bring to
fine-grained tasks are limited, with the exception of SBD to PoS tagging, which is
likely because the delineation of structure in an input sequence learned in the SBD
task helps the PoS tagging tower focus on learning features specific to sentences,
facilitating the learning of long-range label dependencies.

Additionally, our model achieves state-of-the-art performance on text chunking,
and comparable performance on SBD and PoS tagging to the state-of-the-art baselines.
We will test if our CL mechanism can relax task relevance requirement in MTL in
future work.
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[72] Tilk, O., Alumäe, T.: Bidirectional recurrent neural network with attention
mechanism for punctuation restoration. In: Interspeech, vol. 3, p. 9 (2016)

[73] Guo, Q., Qiu, X., Liu, P., Shao, Y., Xue, X., Zhang, Z.: Star-transformer. arXiv
preprint arXiv:1902.09113 (2019)

[74] Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word rep-
resentation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

[75] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

[76] Dankers, V., Rei, M., Lewis, M., Shutova, E.: Modelling the interplay of metaphor
and emotion through multitask learning. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2218–
2229 (2019)

[77] Alqahtani, S., Mishra, A., Diab, M.: A multitask learning approach for diacritic
restoration. arXiv preprint arXiv:2006.04016 (2020)

[78] Collins, M.: Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the 2002 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP 2002),
pp. 1–8. Association for Computational Linguistics, ??? (2002). https://doi.org/
10.3115/1118693.1118694 . https://www.aclweb.org/anthology/W02-1001

[79] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24

https://doi.org/10.1016/j.inffus.2022.06.002
https://doi.org/10.3115/1118693.1118694
https://doi.org/10.3115/1118693.1118694
https://www.aclweb.org/anthology/W02-1001

	Introduction
	Related Work
	Sentence Boundary Detection
	Text Chunking
	Part-of-Speech Tagging
	Multi-task Learning
	Curriculum Learning

	Methodology
	Multi-task Learning
	Local and Global Dependency Sharing
	Curriculum Learning

	Experiment
	Baselines
	Datasets
	Setups

	Results
	Ablation Study
	Curriculum Learning Analysis

	Conclusion

