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Abstract—Emotion recognition from body gestures is challenging since similar emotions can be
expressed by arbitrary spatial configurations of joints, which results in relying on modelling
spatial-temporal patterns from a more global level. However, most recent powerful graph
convolution networks (GCNs) separate the spatial and temporal modelling into isolated
processes, where GCN models spatial interactions using partially fixed adjacent matrices and
1-D convolution captures temporal dynamics, which is insufficient for emotion recognition. In
this work, we propose the 3D-Shift GCN which enables interactions of joints within a
spatial-temporal volume for global feature extraction. Besides, we further develop a multi-scale
architecture, the MS-Shift GCN, to fuse features captured under different temporal ranges for
modelling richer dynamics. After conducting evaluation on two regular action recognition
benchmarks and two gesture based emotion recognition datasets, the results show that the
proposed method outperforms several state-of-the-art methods.

AFFECTIVE COMPUTING is essential for next
generation artificial intelligence (AI) applications,
and emotion analysis is a core piece of this puzzle
[1]. However, current efforts on emotion analysis
are more focusing on human facial expressions,
less attention has been paid to emotion analysis
from gestures. Human body gestures are also
conveying emotions, and sometimes it could be
more important than facial expressions for emo-
tion analysis.

Firstly, body gestures are easier to be observed
than facial expressions, so gesture based emotion
recognition is more easily to be implemented at
the application level. Secondly, compared with
facial expression, body gestures are more likely
to express the real emotion of the person since
gestures are more difficult to suppress if without
training. In this work, we focus on recognizing
emotions from human body gestures using the
skeleton data.
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Various methods have been developed for
skeleton based human gesture analysis, such as
handcrafted features, recurrent neural networks
(RNNs), and the recent graph convolution net-
work (GCN) [2][3] which are gaining increas-
ingly popularity because of their outstanding per-
formances. However, most of these studies were
about actions or gestures recognition, and few
works have been done on gesture based emotion
analysis. We consider emotion recognition can
benefit from the successful experiences of skele-
ton based action recognition methods.

However, unlike actions, emotions are insen-
sitive to the spatial configurations of joints. For
example, when people are performing the same
action while holding different emotions, the spa-
tial configurations of joints can be similar due to
the same action, which cannot provide sufficient
support for recognizing emotions. Thus, for emo-
tion recognition, it is better to put more effort on
modelling the spatial-temporal evolutions of joint
interactions. Unfortunately, most current GCN
based methods process the spatial dimension and
temporal dimension separately, and the temporal
modelling is performed with 1-D convolution,
which are insufficient to capture spatial-temporal
dynamics. Inspired by recently proposed Shift-
GCN [2] which captures the global spatial feature
by shifting channels among all joints within a
frame, we propose the 3D-Shift GCN module
which shifts channels among joints within a
chunk of several frames to achieve the spatial-
temporal feature extraction globally.

This work makes following contributions.
Firstly, we propose the 3D-Shift GCN, a GCN
based module for global spatial-temporal feature
extraction for emotion recognition using human
skeleton data. Additionally, we develop the MS-
Shift GCN, a multi-scale architecture which inte-
grates several 3D-Shift GCN modules with differ-
ent temporal ranges for capturing richer dynam-
ics from different scales. Moreover, we conduct
extensive experiments on two large-scale action
recognition datasets, one spontaneous emotional
gesture dataset, and one posed emotional gesture
dataset to evaluate the performance of the pro-
posed 3D-Shift GCN and the multi-scale archi-
tecture. Lastly, an investigation of emotion recog-
nition performances on different action classes is
made and discussed.

Related work

Emotion Recognition from Body Behaviours
Compared with facial expression analysis,

studies on body behaviour based emotion analysis
are still few. Recently, two surveys have reviewed
the progress of body behaviour based emotion
analysis [4][5]. Gunes et al. [6] developed a
multimodal analyser for emotion recognition such
that facial expressions and body behaviours are
treated as different modalities and processed si-
multaneously. Gunes and Piccaa [7] further ex-
plored different approaches for fusing gestures
and faces for obtaining better emotion recognition
performance. Zadeh et al. [8] analyzed emotions
based on facial gestures such as head nod and
head shake. Castellano et al. [9] solely utilized
quantities of body movements, such as amplitude,
speed and fluidity, for emotion recognition. Kipp
and Martin [10] investigated the correlation be-
tween basic gestures and emotions. Recently, [11]
involved head poses for estimating depression
levels, and [12] conducted sentiment analysis
based on transcriptions extracted from videos.

These works mentioned above were con-
ducted using the appearance data of body ges-
tures, for example images. Saha et al. [13] carried
out the recognition emotion task on skeleton data
of body gestures. The data is captured using
Kinect sensors. Fourati and Pelachaud [14] col-
lected an emotion action dataset which includes
high quality skeleton captured using Motion Cap-
ture system. Besides, the authors [5] collected
a multi-label action emotion dataset which also
provides skeleton data extracted based on RGB
videos.

Action Recognition GCN
Graph convolution network has shown its out-

standing performances on skeleton based action
recognition. Yan et al. [3] firstly introduced GCN
to process human skeleton by organizing human
skeleton data as graphs according to the natural
kinesiology connectivity of human bodies. How-
ever, researchers found that the constant-style
adjacent matrix in [3] is not able to capture longer
ranger features from skeleton data [15]. Specif-
ically, the adjacent matrix defined in [3] only
manifests the connectivity of 1-hop neighbour,
which means joints are physically connected, so
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Figure 1. Diagrams of the proposed method: (a) the overall architecture of the proposed Multi-scale 3D-Shift
GCN, τ denotes the temporal scale of the module; (b) the working flow of the 3D shift GCN; (c.1) 2-D feature
shift used in [2]; and (c.2) the proposed 3d feature Shift.

that feature between further joints will not be
accumulated but there does exist patterns for
example feed and hands when people are walking.

To solve this problem, [15] traded the per-
formance with the complexity, which captured
longer range spatial features using several higher
order adjacent matrices which can capture rela-
tionships from L−hop neighbors of joints. Be-
sides, [16] tried to solve the problem from another
direction that proposed to use learnable adaptive
adjacent matrices to augment the handcrafted one
so that the model is able to learn to extract long
range features. Furthermore, Liu et al. [17] pro-
posed MS-G3D which enlarges the receptive field
in the temporal domain and achieved dominant
performances on several datasets. To this end,
GCN based methods are getting extremely large,
and some researchers start to seek light-weight
solutions. Zhang et al. [18] developed a light-
weight GCN with shallow architecture which
achieves state-of-the-art performances. Cheng et
al. [2] presented the Shift GCN to reduce the
computation cost by eliminating the dependence
to the adjacent matrix, which reduced the compu-
tation cost by 5 ∼ 10 times while achieving the
state-of-the-art performance.

Proposed Method
Figure 1(a) and 1(b) illustrate the general

architecture of the proposed MS-Shift GCN and
detailed working flow of the 3D-Shift GCN, re-
spectively. In this section, we firstly brief some

preliminary of GCN. Moreover, we introduce the
proposed 3D-Shift GCN based on Shift GCN
proposed in [2]. Lastly, we explain the multi-scale
mechanism of the proposed method.

Preliminaries
In recent years, GCN based methods have

dominated skeleton based action recognition
tasks, in which an action sequence (or feature
map) is organized as X ∈ RT×V×Cl , where T , V
and Cl denote the temporal length, joint number,
and channel number of the lth layer of the action
sample, respectively. Given one frame xt from X
where xt ∈ RV×Cl , the feature map of GCN at
layer l is calculated according to:

xl+1
t =

Kv∑
k

Ak(x
l
tW

l
k)�M l

k, (1)

where W l
k ∈ RCl×Cl+1 denotes the trainable

parameter at layer l which is applied on each
channel. Ak ∈ RV×V is the adjacent matrix
which manifests the spatial relationship between
different joints such that its entry A

(i,j)
k = 1 if

and only if joint j and i are connected, and be-
longs to the partition k. Specifically, in the skele-
ton based action recognition, most GCNs chose
that Kv = {root, centripetal, centrifugal}.
For example, A(i,j)

centripetal = 1 means joint j
connects to i and joint j is closer to the gravity
center of the body than joint i. Lastly, M l

k is
the importance for each joint, which is applied
element-wisely.
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Shift GCN
In ordinary GCN related methods, the capa-

bility of spatial feature extraction is endowed by
adjacent matrices, which has two shortcomings.
Firstly, the spatial receptive is limited by the
adjacent matrices. Even with augmented adaptive
adjacent matrices, the optimization of adjacent
matrices is not guaranteed. Moreover, the mul-
tiplication of the adjacent matrices introduces
extract computations. Shift GCN proposed to shift
the channel of feature maps so that the receptive
field of the model is enlarged to the global level
without using adjacent matrices. By removing the
dependency of the adjacent matrix, the computa-
tional cost is reduced by ∼ 75% compared with
the vanilla ST-GCN [3].

The Shift process in [2] is described in Figure
1(c.1). Here we denote the shifting process by
a function Shift(·). For a feature map of a
skeleton is xt ∈ RV×Cl , the shifting process
attempts to circularly shift each channel in the
channel direction with different distances, and
the shift distance is corresponding channel index
mode V. Replacing the adjacent matrix and the
partition summation with the shifting process so
that we can obtain the formulation of Shift GCN:

xl+1
t = Shift(xlt)W

l �M l. (2)

3D shift GCN Operator
In this work, we extend the Shift-GCN in the

temporal dimension. In order to enable the GCN
module to extract the interactions between nodes
from different temporal locations, e.g. increasing
the receptive field in the temporal dimension,
we introduce auxiliary frames from the temporal
neighbours.

As Figure 1.b shows, firstly, considering cur-
rent frame as the anchor frame, a sliding window
samples previous frames and later frames of the
anchor frames according to a given temporal
range τ so that the sampling result x ∈ Rτ×V×Cl .
Secondly, x is reshaped to RV×(Clτ) such that
channels of every joint from every neighbouring
frames are appended to the corresponding joints
of the anchor frame. Therefore, features from
other frames can be viewed as auxiliary channels
of the anchor frame.

Lastly, the global shift mechanism [2] is ap-
plied to the reshaped input for feature extraction:

xl+1
t = Shift(xlt−τ :t+τ )W

l �M l, (3)

where W ∈ RClτ×Cl+1 is the weight of the
proposed 3D-Shift GCN, and M l is also the
importance mask like other GCNs.

Multi-scale 3D-Shift GCN
The multi-scale mechanism has been explored

in [15] and [17]. In this work, we propose the
multi-scale mechanism based on the proposed
3D-Shift GCN. Define set S = {τ1, τ2, · · ·, τm},
the feature of the scale τs ∈ S is equivalent to
making τ = τs−1

2
in Eq. (3). At last, the multi-

scale feature is obtained by summing all feature
from different scales:

X l+1
t =

∑
τs∈S

Shift(X l
t−τ :t+τ )W

l
s �M l, (4)

where τ = τs−1
2

.
Like other GCN models such as ST-GCN [3],

2s-AGCN [16], the proposed model is designed as
the basic module to construct a GCN layer. In this
work, following [2], a deep multi-scale 3D-Shift
GCN network is constructed by stacking several
of the proposed modules followed by a temporal
Shift GCN module.

Experiment
Datasets
NTU RGB+D is a large-scale action recogni-
tion dataset which is selected in this work to
evaluate the effectiveness of the proposed method
on regular action recognition [19]. This dataset
collects 56,880 action samples of 60 categories
from 40 subjects and 3 view angles. This dataset
offers four modalities, RGB frames, depth maps,
body masks, and skeleton joints, and in this work
only the skeleton modality is used. This dataset
provides two evaluation protocols: (1) the cross-
subject (Xsub) protocol which assigns samples
collected from half of the subjects (20 subjects)
for training, and the rest of the subjects for
testing; and (2) the cross-view (Xview) protocol
which assigns samples collected from view 2 and
view 3 for training, and samples from view 1 for
testing.
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NTU RGB+D 120 is an extended version of
the NTU RGB+D dataset. The numbers of its
samples, classes, and participated subjects are
increased to 111,480, 120, and 106, respectively
[20]. Instead of collecting data from multi-views,
samples of this data are recorded under 32 setups,
and each setup specifies different backgrounds
and locations. This dataset provides two default
evaluation protocols: (1) the cross-subject (Xsub)
protocol which assigns samples collected from
half of the subjects (56 subjects) for training,
and the rest of the subjects for testing; and (2)
the cross-setup (Xset) protocol which assigns
samples with even setup IDs for training, and the
left setups for testing.

Emilya [14] is an emotion action dataset con-
tains 8 emotions including Ax (Anxiety), Pr
(Pride), Jy (Joy), Sd (Sad), PF (Panic Fear), Sh
(Shame), Ag (Anger), and Nt (Neutral). Each
emotion is expressed under 8 types of actions,
including SW (Simple Walk), MB (Move Books),
WH (Walk with an object in Hand), KD (Knock at
the Door), BS (Being Seated), SD (Sit Down), Lf
(Lift an object), and Th (Throw an object). In this
part we apply the proposed method to recognize
emotions using the skeleton data of this dataset.
The evaluation protocol is 3-fold cross-validation
adopted from the original publication [14], where
1/3 of the data is selected for testing and the rest
is selected for training. This process is rotated for
three times to make sure all data has been tested
We report the averaged recognition accuracy of
the testing result from all three rotations.

Spontaneous Micro-Gesture (SMG) is col-
lected for analysing subtle human body move-
ments called ’micro-gestures’ which convey hu-
man true hidden emotions [21]. In this dataset,
3,692 micro-gesture of 17 classes are collected
from 40 subjects. All micro-gestures are per-
formed spontaneously. In the experiment, we con-
duct micro-gesture recognition on each individ-
ual micro-gesture clip. The evaluation protocol
adopted is cross-subject evaluation where 35 sub-
jects are used for training, and the rest 5 subjects
are used for testing.

Table 1. Top-1 accuracy % of different 3D-Shift GCN
networks and MS-Shift GCN network.

Methods S={1} S={3} S={5} S={1,3,5}
NTU Xsub 87.8 88.0 88.3 89.0
NTU Xview 95.1 95.2 95.1 95.3
NTU 120 Xsub 80.9 82.4 82.1 82.2
NTU 120 Xset 83.2 83.9 83.3 84.7

Table 2. Top-1 accuracy % compared with state-of-the-art
methods on NTU RGB+D and NTU RGB+D 120 datasets.

Methods NTU NTU-120
Methods Xsub Xview Xsub Xset
PA-LSTM [19] 62.9 70.3 25.6 26.3
ST-LSTM [22] 69.2 77.7 55.7 57.9
GCA-LSTM [23] 76.1 84.0 61.2 63.3
ST-GCN [3] 81.5 88.3 - -
AS-GCN [15] 86.8 94.2 - -
AGC-LSTM [24] 89.2 95.0 - -
AGCN 2s [16] 88.5 95.1 82.9 84.9
SGN [18] 89.0 94.5 79.2 81.5
Shift-GCN Js [2] 87.8 95.1 80.9 83.2
Shift-GCN 2s [2] 89.7 96.0 85.3 86.6
3D-Shift-3 Js 88.0 95.2 82.4 83.9
3D-Shift-3 Bs 88.7 95.09 83.9 85.7
3D-Shift-3 2s 90.0 96.27 85.9 87.4
MS-Shift Js 89.0 95.3 82.2 84.7
MS-Shift Bs 89.1 95.11 84.7 86.3
MS-Shift 2s 90.6 96.33 86.2 88.1

Experimental settings

We implement the MS-Shift GCN network
by stacking 10 GCN layers where each layer is
consist of one MS-Shift GCN module and one
Shift TCG module proposed by [2]. In this exper-
iment, the implemented MS-Shift GCN involves
the scales of S = {1, 3, 5}. For comparison
purposes, we also implement single-scale 3D-
Shift GCN networks with temporal range of 1,
3, and 5.

To train the network, a cross-entropy loss
function and the stochastic gradient descent
(SGD) optimizer are used. For all datasets, the
initial learning rate is set to 0.1, and the weight
decay is set to 0.0001. The learning rate is
reduced by 10 times at epoch 60, 80, and 100,
respectively. Like other GCN based methods,
all input sequences are padded by themselves
circularly to reach a specific temporal length.
Specifically, samples of the NTU and NTU 120
datasets are padded to 300 frames, samples of
the Emilya dataset are padded to 600 frames, and
samples of SMG are padded to 90 frames.
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Table 3. Top-1 accuracy % of micro-gesture recognition
on the SMG dataset

Methods Accuracy
STGCN [3] 41.5
AGCN Js [16] 43.1
Shift-GCN Js [2] 55.3
3D-Shift-3 Js 60.5
3D-Shift-5 Js 61.3
MS-Shift Js 61.5

Table 4. Top-1 accuracy % of emotion recognition on the
Emilya dataset.

Methods Accuracy
Body Cues Rating [14] 32.0
Random Forest [25] 84.8
AGCN Js [16] 84.4
Shift-GCN Js [2] 91.7
3D Shift-3 Js 91.5
3D-Shift-5 Js 91.3
MS-Shift Js 92.0

Ablation study
To evaluate the effectiveness of the proposed

3D Shift strategy and multi-scale architecture, we
compare the single-scale Shift GCN (S = {1})
which is equivalent to the Shift GCN in [2];
single-scale 3D-Shift GCNs with temporal range
of 3 (S = {3}) and 5 (S = {5}); and MS-Shift
GCN (S = {1, 3, 5}) at each column of Table 1.

All results are obtained based on the data
of raw joints, and we refer S = {1} as the
baseline model. According to the table, the two
single-scale 3D-Shift GCN networks outperform
the baseline mode, which shows the 3D-Shift
GCN is more effective than the 2D-Shift GCN.
Moreover, the multi-scale architecture outper-
forms other three single-scale networks on most
dataset protocols except the S = 3 on NTU 120
Xsub protocol.

Action Recognition Performances
Table 2 presents the experimental results of

the single-scale 3D-Shift GCN network with S =
{3} and the MS-Shift GCN with S = {1, 3, 5}
achieved on the NTU RGB+D (columns NTU)
and the NTU RGB+D 120 (columns NTU-120)
datasets. The two methods are denoted as 3D-
Shift-3 and MS-Shift, respectively. Each method
is evaluated under three data modalities: (1) Joint
stream (Js) which only uses the joint stream;
(2) Bone stream (Bs) which only uses the bone
stream; and (3) two-stream fusion (2s) which uses
both of joint and bone streams.

Table 5. Emotion recognition accuracy on each action
achieved by the MS-3D Shift GCN on the Emilya dataset.

SW MB WH KD BS SD Lf Th
Ax 77.8 86.8 90.9 89.6 91.1 95.3 85.7 92.5
Pr 100.0 95.1 96.3 97.2 92.1 81.4 91.2 92.3
Jy 88.1 89.5 90.0 85.7 89.7 87.8 94.7 82.0
Sd 97.6 92.3 100.0 97.6 89.1 86.8 100.0 93.0
PF 95.3 89.8 94.4 94.0 93.0 93.9 93.5 98.0
Sh 96.3 91.7 97.5 98.0 89.7 91.1 96.4 98.0
Ag 95.8 92.7 100.0 97.6 95.5 91.4 85.5 95.5
Nt 96.4 100.0 97.0 96.3 96.3 83.3 100.0 95.8
Avg 93.1 92.0 95.5 94.2 91.9 89.1 92.8 93.3
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Figure 2. Average emotion recognition accuracy of
each action on the Emilya dataset.

We select several state-of-the-art methods
for comparison, including RNN based methods
[19][22][23] and most related GCN based meth-
ods [3][15][16][2][24][18].

As the table shows, the proposed multi-scale
and single-scale 3D-Shift GCN outperform se-
lected comparison methods on both NTU RGB+D
and NTU RGB+D 120 datasets. Besides, on most
modalities the proposed MS-Shift GCN surpasses
the single-scale version, except using the Joint
data only on the NTU 120 dataset Xsub protocol.
This may due to the multi-scale fusion method
used is not optimal. In our future work, we will
explore different fusion methods.

Emotion Recognition Performances
For the performances of the proposed methods

on body gesture based emotion recognition, Table
3 presents the results on the SMG dataset which
show that the proposed MS-Shift GCN outper-
forms the single-scale 3D-Shift GCN and other
comparison methods. Table 4 presents the perfor-
mances of the proposed methods on the Emilya
dataset. Except GCN related methods, we also
compare with the methods of Body Cues Rating
[14] and Random Forest [25]. The results show
that MS-Shift GCN outperforms these selected
methods.
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We also conduct action specific analysis for
emotion recognition on Emilya dataset, which is
presented in the Table 5. The proposed method
achieves the accuracy higher than 85% for most
emotion and action combinations, except the
emotion Ax on action SW, and emotions Pr as
well as Nt on action SD.

Besides, we summarize the average emotion
recognition accuracies on each action of six meth-
ods, which are presented in the Figure 2. Based
on the figure, we can find that the MS-Shift
GCN performs the best on recognizing emotions
performed under several actions, namely KD, BS,
and Th. Especially, the improvements under the
action of BS and Th are promising.

Conclusion
In this work, we propose the 3D-Shift GCN

which is effective for modeling global spatial-
temporal dynamic for recognizing emotions using
human body skeleton data. Moreover, we further
develop the MS-Shift GCN which integrates sev-
eral 3D-Shift GCN modules with different tempo-
ral ranges for capturing richer temporal dynamics.

Based on the experimental results, we ob-
tain following conclusions. Firstly, the ablation
study shows that the 3D-Shift GCN outperforms
the baseline 2D-Shift GCN, and the MS-Shift
GCN can further improve the performance of the
single-scale model. Additionally, the experiments
show that the proposed methods outperform sev-
eral state-of-the-art methods on selected four
datasets, which demonstrates that the proposed
methods are not only effective for regular action
recognition, but also for spontaneous and posed
emotion recognition. Lastly, we investigate the
effect of different actions on emotion recognition
performances, and find that recognizing emotions
from few actions could be relative harder.

There are three directions for our future work.
Firstly, develop a new data dependent shift strat-
egy that can adapt to the input features, which
is expected to provide better performances. Sec-
ondly, investigate other multi-scale fusion meth-
ods to improve the performance. Lastly, develop
in-depth analysis on how different actions can
influence the recognition of emotions, and this
result is expected to provide us qualitative instruc-
tion for developing body gesture based emotion
recognition methods.

ACKNOWLEDGMENT
This work is supported by the Academy of

Finland for ICT 2023 project (grant 328115) and
project MiGA (grant 316765) and Infotech Oulu.
As well, the authors wish to acknowledge CSC-
IT Center for Science, Finland, for computational
resources.

REFERENCES
1. E. Cambria, “Affective Computing and Sentiment Anal-

ysis,” IEEE Intelligent Systems, vol. 31, no. 2, 2016, pp.

102–107.

2. K. Cheng et al., “Skeleton-Based Action Recognition

With Shift Graph Convolutional Network,” Proceedings

of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2020, pp. 183–192.

3. S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph

convolutional networks for skeleton-based action recog-

nition,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, 2018.

4. F. Noroozi et al., “Survey on emotional body gesture

recognition,” IEEE Transactions on Affective Computing,

2018.

5. Y. Luo et al., “Arbee: Towards automated recognition of

bodily expression of emotion in the wild,” International

Journal of Computer Vision, vol. 128, no. 1, 2020, pp.

1–25.

6. H. Gunes, M. Piccardi, and T. Jan, “Face and Body ges-

ture recognition for a vision-based multimodal analyser,”

Pan-Sydney Area Workshop on Visual Information Pro-

cessing, 2004.

7. H. Gunes and M. Piccardi, “Affect recognition from face

and body: early fusion vs. late fusion,” 2005 IEEE Inter-

national Conference on Systems, Man and Cybernetics,

vol. 4, 2005, pp. 3437–3443.

8. A. Zadeh et al., “Multimodal sentiment intensity analysis

in videos: Facial gestures and verbal messages,” IEEE

Intelligent Systems, vol. 31, no. 6, 2016, pp. 82–88.

9. G. Castellano, S. D. Villalba, and A. Camurri, “Recognis-

ing human emotions from body movement and gesture

dynamics,” International Conference on Affective Com-

puting and Intelligent Interaction, 2007, pp. 71–82.

10. M. Kipp and J.-C. Martin, “Gesture and emotion: Can

basic gestural form features discriminate emotions?”

2009 3rd International Conference on Affective Comput-

ing and Intelligent Interaction and Workshops, 2009, pp.

1–8.

11. S. A. Qureshi et al., “Multitask representation learning

for multimodal estimation of depression level,” IEEE

Intelligent Systems, vol. 34, no. 5, 2019, pp. 45–52.

July/August 2022 109



Affective Computing and Sentiment Analysis

12. L. Stappen et al., “Sentiment analysis and topic recog-

nition in video transcriptions,” IEEE Intelligent Systems,

vol. 36, no. 2, 2021, pp. 88–95.

13. S. Saha et al., “A study on emotion recognition from

body gestures using Kinect sensor,” 2014 International

Conference on Communication and Signal Processing,

2014, pp. 056–060.

14. N. Fourati and C. Pelachaud, “Perception of emotions

and body movement in the emilya database,” IEEE

Transactions on Affective Computing, vol. 9, no. 1, 2016,

pp. 90–101.

15. M. Li et al., “Actional-structural graph convolutional net-

works for skeleton-based action recognition,” Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2019, pp. 3595–3603.

16. L. Shi et al., “Two-stream adaptive graph convolutional

networks for skeleton-based action recognition,” Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019, pp. 12026–12035.

17. Z. Liu et al., “Disentangling and Unifying Graph Con-

volutions for Skeleton-Based Action Recognition,” Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2020, pp. 143–152.

18. P. Zhang et al., “Semantics-Guided Neural Networks for

Efficient Skeleton-Based Human Action Recognition,”

Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2020, pp. 1112–1121.

19. A. Shahroudy et al., “Ntu rgb+ d: A large scale dataset

for 3d human activity analysis,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, 2016, pp. 1010–1019.

20. J. Liu et al., “Ntu rgb+ d 120: A large-scale benchmark

for 3d human activity understanding,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.

21. H. Chen et al., “Analyze spontaneous gestures for emo-

tional stress state recognition: A micro-gesture dataset

and analysis with deep learning,” 2019 14th IEEE In-

ternational Conference on Automatic Face & Gesture

Recognition (FG 2019), 2019, pp. 1–8.

22. J. Liu et al., “Spatio-temporal lstm with trust gates for

3d human action recognition,” European Conference on

Computer Vision, 2016, pp. 816–833.

23. J. Liu et al., “Skeleton-based human action recognition

with global context-aware attention LSTM networks,”

IEEE Transactions on Image Processing, vol. 27, no. 4,

2017, pp. 1586–1599.

24. C. Si et al., “An attention enhanced graph convolutional

lstm network for skeleton-based action recognition,”

Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2019, pp. 1227–1236.

25. N. Fourati and C. Pelachaud, “Multi-level classification

of emotional body expression,” 2015 11th IEEE Interna-

tional Conference and Workshops on Automatic Face

and Gesture Recognition (FG), vol. 1, 2015, pp. 1–8.

Henglin Shi is currently a Ph.D. candidate with the
Center for Machine Vision and Signal Analysis, Uni-
versity of Oulu, Finland. He received his B.S. and M.S.
degrees in Computer Science and Information Pro-
cessing Science in 2012 and 2016, respectively. His
research interests include machine learning and com-
puter vision based human behavior analysis. Contact
him at henglin.shi@oulu.fi.

Wei Peng is currently a Ph.D. candidate with the
Center for Machine Vision and Signal Analysis, Uni-
versity of Oulu, Oulu, Finland. He received the M.S.
degree in computer science from the Xiamen Univer-
sity, Xiamen, China, in 2016. His current research in-
terests include machine learning, affective computing,
medical imaging, and human action analysis. Contact
him at wei.peng@oulu.fi.

Haoyu Chen is currently a Ph.D. candidate with
the Center for Machine Vision and Signal Analysis,
under the supervision of Prof. G. Zhao. He received
the B.Sc. degree from the China University of Geo-
sciences, Wuhan, China, in 2015, and the M.Sc. de-
gree in computer sciences and engineering from the
University of Oulu, Finland, in 2017. His research in-
terests include action, gesture recognition, and emo-
tional AI. Contact him at chen.haoyu@oulu.fi.

Xin Liu is currently an Associate Professor with
the School of Electrical and Information Engineer-
ing, Tianjin University, China. He was also a senior
researcher with the Center for Machine Vision and
Signal Analysis, University of Oulu, Finland. He re-
ceived his Ph.D. degree in Computer Science and
Engineering in 2019. His research interests include
human behavior analysis, 3D computer vision, im-
age restoration, and object detection. Contact him at
xin.liu@oulu.fi.

Guoying Zhao is the corresponding author and is
currently a Professor with the Center for Machine
Vision and Signal Analysis, University of Oulu, Fin-
land. She received the Ph.D. degree in computer
science from the Chinese Academy of Sciences,
Beijing, China, in 2005. Her current research in-
terests include affective computing, facial-expression
and micro-expression recognition, emotional gesture
analysis, and human computer interaction. Contact
her at guoying.zhao@oulu.f.i.

110 IEEE Intelligent Systems 37(4)

mailto:henglin.shi@oulu.fi
mailto:wei.peng@oulu.fi
mailto:chen.haoyu@oulu.fi
mailto:xin.liu@oulu.fi
mailto:guoying.zhao@oulu.f.i

	Related work
	Emotion Recognition from Body Behaviours
	Action Recognition GCN

	Proposed Method
	Preliminaries
	Shift GCN
	3D shift GCN Operator
	Multi-scale 3D-Shift GCN

	Experiment
	Datasets
	NTU RGB+D
	NTU RGB+D 120
	Emilya
	Spontaneous Micro-Gesture (SMG)

	Experimental settings
	Ablation study
	Action Recognition Performances
	Emotion Recognition Performances

	Conclusion
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Henglin Shi
	Wei Peng
	Haoyu Chen
	Xin Liu
	Guoying Zhao


