
 

DEPARTMENT: AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS 

Detecting Personal Intake 
of Medicine from Twitter 

Mining social media messages such as tweets, blogs, 

and Facebook posts for health and drug related 

information has received significant interest in 

pharmacovigilance research. Social media sites (e.g., 

Twitter), have been used for monitoring drug abuse, 

adverse reactions to drug usage, and analyzing 

expression of sentiments related to drugs. Most of 

these studies are based on aggregated results from a 

large population rather than specific sets of 

individuals. In order to conduct studies at an 

individual level or specific groups of people, 

identifying posts mentioning intake of medicine by the user is necessary. Toward this 

objective we develop a classifier for identifying mentions of personal intake of medicine 

in tweets. We train a stacked ensemble of shallow convolutional neural network (CNN) 

models on an annotated dataset. We use random search for tuning the hyper-

parameters of the CNN models and present an ensemble of best models for the 

prediction task. Our system produces state-of-the-art results, with a micro-averaged F-

score of 0.693. We believe that the developed classifier has direct uses in the areas of 

psychology, health informatics, pharmacovigilance, and affective computing for tracking 

moods, emotions, and sentiments of patients expressing intake of medicine in social 

media. 

Social media has become a ubiquitous source of information for various topics. Right from in-
formation related to daily events, personal rants, to expressions of intake of medicine and ad-
verse drug reactions, are readily available in publicly accessible social media channels such as 
Twitter, DailyStrength, MedHelp, among others. Huge amounts of data made available on these 
platforms have become a useful resource for conducting public health monitoring and surveil-
lance, commonly known as pharmacovigilance.1 The work presented in this paper aims at identi-
fying intake of personal medication expressed by a user on Twitter. The broader perspective of 
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such a system is to aid in developing automated methods for performing pharmacovigilance 
activities in social media, and to study the effects of medicine on an individual as well as specific 
cohorts.2 Such a system would further aid in studying psychology of individuals as well as 
groups by tracking sentiments, emotions and moods expressed in social media after intake of a 
particular medicine. 

Attempts have been made to mine social media content in order to identify adverse drug reac-
tions,3 abuse,4 and user sentiment,5 from posts mentioning medications. All these studies are 
based on aggregated results from large set of content that mentions a medicine/drug, without 
taking into account whether the user has actually consumed the medicine/drug. Without this 
knowledge, a true assessment of the effects of medication intake in general and how it affects a 
specific group of users cannot be done. In order to leverage social media data for performing 
such assessments and studying targeted groups, it is necessary to develop systems that can auto-
matically distinguish posts that expresses personal intake of medicine from those that do not. 

In this work we concentrate on Twitter as the social media channel. The key to the process of 
identifying tweets mentioning personal intake of medicine and to draw insights from them is to 
build accurate text classification systems. The effectiveness of developing classifiers has already 
shown to be useful in identifying adverse drug reactions expressed in Twitter.3 However, mining 
social media posts comes with unique challenges. Microblogging websites like Twitter pose 
challenges for automated information mining tools and techniques due to their brevity, noisiness, 
idiosyncratic language, unusual structure and ambiguous representation of discourse. Infor-
mation extraction tasks using state-of-the-art natural language processing techniques, often give 
poor results for tweets. Abundance of link farms, unwanted promotional posts, and nepotistic 
relationships between content creates additional challenges.6 

The main objective of the task presented in this paper is to categorize short colloquial tweets into 
one of the following three classes. 

Personal medication intake (Class 1) - tweets in which the user clearly expresses a personal 
medication intake/consumption (e.g., “I had the worst headache ever and I just took an AdvilRe-
lief #advil and now I feel so much better thank”) 

Possible medication intake (Class 2) - tweets that are ambiguous but suggest that the user may 
have taken the medication (e.g., “I should have taken advil on friday then i might have actully 
had an amazing weekend. instead of throwing up 20 times a day #advil, not this time”) 

Non-intake (Class 3) - tweets that mention medication names but do not indicate personal intake 
(e.g., “Understand the causes and managing #Migraine Madness #aspirin #diet #botox #advil 
#relpax #headache”). 

Towards the above goal, we design and implement a deep learning classifier - Stacked Ensemble 
of Shallow Convolutional Neural Networks trained on an annotated dataset provided at 
SMM4H-2017 shared task. We compare the results of our classification system with other classi-
fiers that participate in the shared task and get state-of-the-art results, with a micro-averaged F-
score of 0.693 for Classes 1 and 2. We submitted our system (InfyNLP) at the workshop and 
were ranked first amongst 26 submissions.7,8 In this paper, we intend to elaborately discuss and 
present our submitted system as well as our model choices and learning. 

METHODOLOGY 
Deep learning systems have recently shown to achieve top results in tasks related to natural lan-
guage processing on tweets.9 Historically, ensemble learning has proved to be very effective in 
most of the machine learning tasks including the famous winning solution of the Netflix Prize.10 
Ensemble models can offer diversity over model architectures, training data splits or random 
initialization of the same model or model architectures. Multiple average or low performing 
learners are combined to produce a robust and high-performing learning model. 

A convolutional neural network (CNN) is a deep learning architecture that has shown strong 
performance on sentence level text classification.11 Convolutional neural networks are effective 
at document classification primarily because they are able to pick out salient features (e.g., to-
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kens or sequences of tokens) in a way that is invariant to their position within the input sequence 
of words. Even fairly simple CNNs evaluate at a level of or even better than more complex deep 
learning architectures.12 Therefore, we design and implement a stacked ensemble of shallow 
convolutional neural networks (see Figure 1) for solving the classification task presented in this 
paper. The main intuition behind developing such an ensemble was to take the best of all worlds. 
Next, we explain the architecture of stacked ensemble of CNNs that we train. 

Stacked Ensemble of Shallow Convolutional Neural 
Networks (CNNs) 
A stacked ensemble of shallow CNNs is a large ensemble classifier comprising of smaller en-
sembles stacked over one another, prioritized by their performance, with the underlying classifier 
being a standard shallow CNN model similar to that used in the work.11 In order to train such an 
ensemble model we enlist the generic steps: 

 

Figure 1: A stacked ensemble of 100 (20 x 5) shallow convolutional neural networks. 

Step 1. Train a shallow CNN model on each fold while performing c-fold cross validation on the 
training dataset. 

Step 2. The output prediction of each model trained on each fold is averaged to get the final pre-
diction of an ensemble of c CNN models (see Equation 1). 

Step 3. Train n such ensembles as in Step 2. 

Step 4. Sort the n ensembles in terms of their performance on the metric suitable for the classifi-
cation task. 

Step 5. Choose top K ensembles based on their performance on the training dataset to form the 
final stacked ensemble of K CNN ensemble models. 

Step 6. The final output prediction is given by the average of the predictions made by each of the 
top K ensembles (see Equation 2). 
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Figure 1, shows a high level architecture of the final stacked ensemble of CNNs that we use in 
predicting the outcome of the task presented in this paper. We train a standard shallow CNN 
model, on each fold while performing 5-fold cross validation on our training dataset. We take the 
output prediction of each of these models trained on each fold and average them to create an 
ensemble of 5 models. We further train 99 such ensembles. For the final prediction we sort the 
ensembles in order of their decreasing performance on the training dataset and take the top K 
ensembles. We take the prediction of each of the K ensembles and average them to get the final 
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prediction from our stacked ensemble of shallow CNNs. In general, we can take top K such en-
sembles and create a stacked ensemble of top K ensemble of shallow CNNs. 

In order to get the best results from any classification model, hyperparameter tuning is a key step 
and CNNs are no exception. While the existing literature offers guidance on practical design 
decisions, identifying the best hyperparameters of a CNN requires experimentation. This requires 
evaluating trained models on a cross-validation dataset and manually choosing the hyperparame-
ters that produce the best results. Automated hyperparameter searching methods like grid search, 
random search, and Bayesian optimization methods are also commonly used. In our presented 
system we use random search,13 to explore the hyperparameters of a shallow CNN architecture 
and form an ensemble of the best models, which we refer to as a stacked ensemble. Next, we 
share the detailed settings, output and analysis of our experiment. 

EXPERIMENT 
In this section, we present our experiments. We give an overview of the dataset on which we 
train our models, and discuss the hyperparameter settings. Results of our experiments are pre-
sented, accompanied by a discussion of the metrics used for evaluation and comparison with 
other models trained on the same dataset. 

Dataset 
The dataset used in this paper is publicly available and can be obtained from the 2nd Social Me-
dia Mining for Health Applications Shared Task at AMIA 2017 website. The organizers of the 
task provided 8000 annotated tweets as a training dataset and 2260 additional tweets as devel-
opment dataset. We collected the tweets using the script provided along with the dataset, by 
querying Twitter’s API. However, we could not collect all the tweets as some of them were not 
available at the moment when we executed our collection process. Later, the organizers also 
shared the test dataset, which was used for calculating the final scores of the submitted models. 
The test dataset consists of 7513 tweets. A distribution of tweets provided for each class and the 
mapping of each class is shown in Table 1. It is to be noted that for training our models, we 
combine the training and development dataset provided and treat it as our training dataset, there-
fore learning our models using 9663 tweets with 5-fold cross validation. 

Table 1: Shared task data distribution. Classes 1, 2 and 3 represent personal medication intake, 
possible medication intake and no medication intake, respectively. 

 Class 1 Class 2 Class 3 Total 
Train 1847 3027 4789 9663 
Test 1731 2697 3085 7513 

 

Data Preprocessing and CNN Architecture 
We use Spacy for all our data preprocessing and cleaning activities. We do not remove stop-
words. Each document in our training and test dataset is converted to a fixed size document of 47 
words/tokens. We use two pre-trained word embeddings – Godin,14 and Shin,15 shared by the 
authors. Each of these embeddings are of 400 dimensions. Each word in the input tweet is repre-
sented by its corresponding embedding vector, when present in the vocabulary of the model. 
Tweets are mapped to embedding vectors and are available as a matrix input to the model. Con-
volutions are performed across the input word-wise using differently sized filters. The resulting 
feature maps are then processed using a max pooling layer to condense or summarize the ex-
tracted features. The final layer consists of a fully-connected dense neural network with the ex-
tracted features as the input and a soft-max output. The final model is trained using the procedure 
described earlier, along with the choice of hyperparamters as explained next. 
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Table 2: Hyperparameter ranges used for random search permutations. 

Hyperparameter Range  
Word Embedding Model  godin [16], shin [17] 

No. of Filters  100, 200, 300, 400 
Filter Sizes  [1,2,3,4,5], [2,3,4,5,6], [3,4,5,6,7], [1,2,2,2,3],  

 [2,3,3,3,4], [3,4,4,4,5], [4,5,5,5,6] 
Dense Layer Size  100, 200, 300, 400 

Dropout Probability  0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
Batch Size  50, 100, 150 

Learning Rate  0.0001, 0.001 
Adam beta2  0.9, 0.999 

 

Hyperparameter Settings for CNNs 
We use Xavier weight initialization scheme,16 for initializing the weights of the CNNs. Adam17 
with two annealing restarts has been shown to work faster and perform better than SGD in other 
NLP tasks.18 Therefore, we use the same as our optimization algorithm. We use five filters with 
varying filter sizes in the convolution layer and use dropout during the training process. The 
models are implemented using TensorFlow. The entire ranges of the hyperparameters that we 
give to our random search procedure is shown in Table 2. The word embedding model to be used 
during training is also treated as a hyperparameter. 

One of the key aspects of CNNs are its filters and the choice of filters while designing the archi-
tecture. Different filter sizes allow grouping of word representations at different scales. We also 
explore the performance of filters of different sizes for the CNN ensembles that we train. By 
keeping the filter size fixed we train four runs of CNN ensembles by grid search on other hy-
perparameters, namely learning rate and filter size. Figure 2, shows the average performances of 
individual filter sizes for four runs along with their standard deviations. A filter size of 5 gives 
the best performance as evident from the figure. We permute over the best five such filter sizes 
for our hyperparameter settings. 

 

Figure 2: Average and standard deviation of the performances of ensembles of CNN models on 
four runs, with a fixed filter size. 

Evaluation Metric 
The evaluation metric used was micro-averaged F-score (F1+2) of the class 1 (personal medica-
tion intake) and class 2 (possible medication intake), for assessing the performance of our model, 
as used in the Social Media Mining for Health shared task.8 The equation for calculating the 
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micro- averaged F-score for classes 1 and 2, which in turn depends on micro-averaged precision 
(P1+2) and recall (R1+2) for classes 1 and 2, is shown in equations 3, 4 and 5, respectively. 
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where, TPi is the number of True Positives for Class i; TNi is the number of True Negatives for 
Class i; FPi is the number of False Positives for Class i; FNi is the number of False Negatives for 
Class i. 

 

Figure 3: Performances for top 20 individual 5-fold CNN ensembles and collective 
stacked-ensemble of CNN ensembles arranged in decreasing order. 

Results and Discussion 
An ensemble of five CNNs is trained during 5-fold cross-validation training performed on our 
combined training dataset along with random search on the hyperparameter ranges. We train 99 
such ensembles. The performance of the top 20 individual ensembles on the training data (blue) 
and on the test data (red) is shown in Figure 3. The models are arranged in the order of their 
decreasing training performances. It can be also observed from Figure 3, that the fifth best indi-
vidual 5-fold CNN ensemble achieves the best scores on the test dataset. We create stacked en-
sembles from these ensembles by taking top K ensemble models. We show the performances for 
such top K stacked ensembles (brown), as well. The detailed performances on the evaluation 
metrics of top 3, top 10 and top 20 stacked ensembles are shown in Tables 3 and 4, and denoted 
by stars in Figure 3. The stacked ensemble formed using top 20 best performing ensembles 
achieved the best micro averaged F1 score on the test dataset. This proves an overall effective-
ness of ensemble models in boosting performance on the present classification task. 

 

Table 3: Evaluation of stacked ensembles on test data w.r.t. precision and recall. 

 Precision  Recall 
 1 2 3  1 2 3 

Top3 0.696 0.644 0.842  0.704 0.725 0.763 
Top10 0.685 0.646 0.849  0.709 0.729 0.758 
Top20 0.690 0.648 0.853  0.712 0.733 0.761 
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Table 4: Evaluation of stacked ensembles on test data w.r.t. F1 and micro averaged scores.  
* marks the state-of-the-art micro averaged F1 on the task’s dataset achieved by our best model. 

 F1  R1+2 P1+2 F1+2 
 1 2 3     

Top3 0.700  0.682  0.800   0.664  0.716  0.689 
Top10 0.697 0.685 0.801  0.661 0.721 0.690 
Top20 0.701 0.688 0.804  0.664 0.725 0.693* 

 

We compare the performance of our system with some of the top performing systems in the 
SMM4H workshop.7 These systems represent the current state-of-the-art performances on the 
given dataset and task. With the exception of NRC-Canada that implements a Support Vector 
Machine classifier using a variety of surface-form, sentiment, and domain-specific features, all 
the other systems attempt to solve the task using convolutional neural networks. UKNLP trained 
a CNN model with attention mechanism. CSaRUS-CNN uses a cost sensitive and random under-
sampling variants of CNNs. TurkuNLP developed an ensemble of neural networks with features 
generated by word and character-level convolutional neural network channels and a condensed 
weighted bag-of-words representation. There is a clear indication of ensembles and CNNs being 
the dominant strategy of choice in implementing high-performing systems for the task presented 
in this paper. 

Table 5: Performance comparison of our system with the other state-of-the-art systems. 

Systems Micro-Avg 
Precision 

Class 1 and 2 
(P1+2) 

Micro-Avg 
Recall 

Class 1 and 2 
(R1+2) 

Micro-Avg 
F-score 

Class 1 and 2 
(F1+2) 

Our System 0.725 0.664 0.693 
UKNLP 0.701 0.677 0.689 

NRC-Canada 0.704 0.635 0.668 
TurkuNLP 0.701 0.630 0.663 

CSaRUS-CNN 0.709 0.604 0.652 
 

CONCLUSIONS AND FUTURE WORK 
In this paper we showed the generic effectiveness of CNNs and ensembles on identification of 
personal medication intake from Twitter posts. Our proposed architecture of stacked ensemble of 
shallow CNNs, out-performed other models. This provided an empirical evaluation of our initial 
aim of combining ensembles with CNNs along with training the models using random search on 
the hyperparameters. In the future, we plan to work more on hyperparameter tuning using ran-
dom search and various other search procedures and analyze their effectiveness. Instead of using 
pre-trained word embeddings, it would also be interesting to look at the performance of our 
models by training word and phrase embeddings on a domain specific dataset of tweets. We 
would also like to use the classifier for studying moods and emotions of social media users ex-
pressing intake of medicine and plan to use our system in solving some of the problems that lie 
at the intersection of pharmacovigilance, affective computing, and psychology. Moreover, since 
multimodal information has shown a great importance in sentiment analysis,19,20 we would like 
to leverage them in future to effectively identify adverse drug reactions. 
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