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Abstract—Sentiment Quantification is the task of estimating the relative frequency of
sentiment-related classes — such as Positive and Negative — in a set of unlabeled documents. It
is an important topic in sentiment analysis, as the study of sentiment-related quantities and
trends across a population is often of higher interest than the analysis of individual instances. In
this work, we propose a method for Cross-Lingual Sentiment Quantification, the task of
performing sentiment quantification when training documents are available for a source
language S but not for the target language T for which sentiment quantification needs to be
performed. Cross-lingual sentiment quantification (and cross-lingual text quantification in
general) has never been discussed before in the literature; we establish baseline results for the
binary case by combining state-of-the-art quantification methods with methods capable of
generating cross-lingual vectorial representations of the source and target documents involved.
Experiments on publicly available datasets for cross-lingual sentiment classification show that
the presented method performs cross-lingual sentiment quantification with high accuracy.

IN CROSS-LINGUAL TEXT CLASSIFICA-
TION, documents may be expressed in either a
source language S or a target language T , and
training documents are available only for S but
not for T ; cross-lingual text classification thus
consists of leveraging the training documents in
the source language in order to train a classifier
for the target language, also using the fact that
the classification scheme C is the same for both S
and T . Cross-lingual text classification has been
widely investigated in the literature [1], [2].

A companion task which instead has never
been tackled, and which is the object of this
paper, is Cross-Lingual Text Quantification, the
task of performing “quantification” across a
source language S and a target language T .
Quantification is a supervised learning task that
consists of predicting, given a set of classes
C and a set D (a sample) of unlabeled items
drawn from some domain D, the prevalence (i.e.,
relative frequency) pc(D) of each class c ∈ C in
D.
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Put it another way, given an unknown dis-
tribution pC(D) of the members of D across C
(the true distribution), quantification consists in
generating a predicted distribution p̂C(D) that
approximates pC(D) as accurately as possible [3].

Quantification is especially important for ap-
plication fields characterized by an interest in
aggregate (rather than individual) data, such as
the social sciences, market research, political sci-
ence, and epidemiology. These disciplines often
face the need to label data in highly dynamic
scenarios [4], i.e., scenarios in which the dis-
tribution of data in the unlabeled set may be
very different from the distribution of data in
the training set. In such contexts, accurate class
prevalence estimation may be challenging, due
to the fact that the “iid assumption” on which
standard learning methods are based (i.e., the
assumption that the training set and the test set are
identically and independently sampled from the
same data distribution) is obviously not verified.

Sentiment quantification [5] is the task of
interest in all contexts in which the results of
sentiment analysis are to be analyzed at the ag-
gregate level. For instance, hardly anyone among
those who perform sentiment analysis for Twitter
data are interested in determining the sentiment
conveyed by a single tweet; in most such applica-
tions, figuring out the percentage and the inten-
sity [6] of tweets that exhibit a certain sentiment
is the real goal, which shows that quantification
(and not classification) should be the task to
focus on [7]. This paper adds cross-linguality
to the picture, thus addressing those application
contexts characterized by the absence of training
data for the “target” language of interest, and the
presence of training data for a different “source”
language [8]. Everything we say in this paper
straightforwardly extends to dealing with the si-
multaneous presence of several source languages
and/or several target languages.

In principle, quantification can be
straightforwardly solved via classification,
i.e., by training a classifier h using training data
labeled according to C, classifying the unlabeled
data in D via h, and counting, for each c ∈ C,
how many items in D have been attributed to c
(the “classify and count” method).

However, research has conclusively
shown [9], [10], [11], [12] that this approach
leads to suboptimal quantification accuracy.
To see this consider that a binary classifier h1

for which FP = 20 and FN = 20 (FP and
FN standing for the “false positives” and “false
negatives”, respectively, that it has generated on a
given dataset) is worse, in terms of classification
accuracy, than a classifier h2 for which, on the
same dataset, FP = 18 and FN = 20. However,
h1 is intuitively a better binary quantifier than
h2; indeed, h1 is a perfect quantifier, since FP
and FN are equal and thus, when it comes to
class frequency estimation, compensate each
other, so that the distribution of the test items
across the class and its complement is estimated
perfectly. Since classification and quantification
pursue different goals, quantification should be
tackled as a task of its own, using different
evaluation measures and, as a result, different
learning algorithms.

In this paper, we establish baseline results
for (binary) cross-lingual sentiment quantifica-
tion by combining a number of quantification
methods with state-of-the-art cross-lingual pro-
jection methods.For performing this latter task
we explore Structural Correspondence Learning
(SCL [1]) and Distributional Correspondence
Indexing (DCI [2]), since (i) SCL is arguably
the most representative cross-lingual projection
method in the literature (and thus a manda-
tory baseline in lab experiments of related re-
search), while DCI is a cross-lingual projection
method that has recently demonstrated state-of-
the-art performance in cross-lingual text clas-
sification [13], and (ii) both methods provide
a general procedure for projecting source and
target documents onto a common vector space,
and (iii) the code implementing both methods is
publicly available and easily modifiable. Other
cross-lingual methods proposed in the literature
learn representations that are dependent on the
set of unlabeled documents to classify (in lab
experiments: the test set). This implicitly means
that each new unlabeled set to quantify upon
would require retraining from scratch, something
that would prove prohibitive in the experimental
setting of quantification.
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METHOD
Different quantification methods have been pro-
posed that exploit the classification outcomes
that a previously trained classifier delivers on
unlabeled data. We explore different cross-lingual
sentiment quantification methods that result from
the combination of a cross-lingual projection
method, a “classify and count” policy, and an
estimate correction method. In this paper, we
only address the binary case, where the classes
{Positive,Negative} are indicated as C =
{⊕,	}.

Cross-Lingual Document Representations
In cross-lingual applications, SCL and DCI rely
on the concept of pivot term (or simply pivot) [14]
in order to bridge the gap between the differ-
ent feature spaces which the different languages
generate. In such contexts, pivots are defined as
highly predictive pairs of translation-equivalent
terms which behave in a similar way in their re-
spective languages. Typical examples of pivots for
sentiment-related applications are adjectives with
domain-independent meaning such as “excellent”
or “poor”, and partially domain-dependent terms
such as “fancy” (as found, e.g., in the arts and
crafts domain and in the clothing domain) or
“masterpiece” (as found, e.g., in the book domain,
movie domain, and music domain), with their
respective translations in other languages.

A common strategy to select the pivots auto-
matically consists of taking the top elements from
a list of terms ranked according to their mutual in-
formation to the label representing the domain (as
computed from source-language training data),
and filtering out those candidates whose trans-
lation equivalent shows a substantial prevalence
drift in the target language. A word translation
oracle, with a fixed budget of allowed calls, is
assumed available.

Once pivots are selected, different methods
can be defined in order to produce cross-lingual
vectorial representations. Both SCL and DCI first
represent documents as vectors x in a (weighted)
bag-of-words model of dimension |V | (with V
being the vocabulary), and then apply a linear
projection (parameterized by a matrix θ ∈ R|V |L)
of type x>θ, thus mapping |V |-dimensional vec-
tors into L-dimensional vectors in a cross-lingual
latent space.

To achieve this, the unlabeled collections
from the source and target domains are inspected.
The matrix can be subsequently used to project
source documents (to train a classifier) and target
documents (to classify them).

SCL builds the projection matrix by resolving
an auxiliary prediction problem for each pair of
translation-equivalent pivot terms. Each problem
consists of predicting the presence of a pivot
term based on the observation of the other terms.
By solving the auxiliary problems (via linear
classification), structural correspondences among
terms and pivots are captured and collected as a
matrix of correlations. This matrix is later decom-
posed using truncated SVD to generate the final
projection matrix θ. DCI relies instead on the
distributional hypothesis to directly model corre-
spondences between terms and pivots. Each row
of the projection matrix DCI computes represents
a term profile, where each dimension quantifies
the degree of correspondence (as measured by
a distributional correspondence function) of the
term to a pivot.

Classifying and Counting
An obvious way to solve quantification is by
aggregating the scores assigned by a classifier to
the unlabeled documents.

In connection to each of SCL and DCI we ex-
periment with two different aggregation methods,
one that uses a “hard” classifier (i.e., a classifier
h⊕ : D → {0, 1} that outputs binary decisions,
0 for 	 and 1 for ⊕) and one that uses a “soft”
classifier (i.e., a classifier s⊕ : D → [0, 1] that
outputs posterior probabilities Pr(⊕|x), repre-
senting the probability that the classifier attributes
to the fact that x belongs to the ⊕ class). Of
course, Pr(	|x) = (1− Pr(⊕|x)).

The (trivial) classify and count (CC) quanti-
fier then comes down to computing

p̂CC
⊕ (D) =

∑
x∈D h⊕(x)

|D|
(1)

while the probabilistic classify and count quanti-
fier (PCC [10]) is defined by

p̂PCC
⊕ (D) =

∑
x∈D s⊕(x)

|D|
(2)

Of course, for any method M we have p̂M	 (D) =
(1− p̂M⊕ (D)).
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Adjusting the Results of Classify and Count
A popular quantification method consists of ap-
plying an adjustment to the prevalence p̂⊕(D)
estimated via “classify and count”. It is easy to
check that, in the binary case, the true prevalence
p⊕(D) and the estimated prevalence p̂⊕(D) are
such that

p⊕(D) =
p̂CC
⊕ (D)− fprh

tprh − fprh

(3)

where tprh and fprh stand for the true positive
rate and false positive rate of the classifier h⊕
used to obtain p̂CC

⊕ . The values of tprh and fprh

are unknown, but can be estimated via k-fold
cross-validation on the training data. In the binary
case this comes down to using the results h⊕(x)
obtained in the k-fold cross-validation (i.e., x
ranges on the training documents) in equations

ˆtprh =

∑
x∈⊕ h⊕(x)

|{x ∈ ⊕}|
ˆfprh =

∑
x∈	 h⊕(x)

|{x ∈ 	}|
(4)

We obtain estimates of pACC
⊕ (D), which define

the adjusted classify and count method [12]
(ACC) by replacing tprh and fprh in Equation
3 with the estimates of Equation 4, i.e.,

p̂ACC
⊕ (D) =

p̂CC
⊕ (D)− ˆfprh

ˆtprh − ˆfprh

(5)

If the soft classifier s⊕(x) is used in place of
h⊕(x), analogues of ˆtprh and ˆfprh from Equa-
tion 4 can be defined as

ˆtpr s =

∑
x∈⊕ s⊕(x)

|{x ∈ ⊕}|
ˆfpr s =

∑
x∈	 s⊕(x)

|{x ∈ 	}|
(6)

We obtain pPACC
⊕ (D) estimates, which define the

probabilistic adjusted classify and count method
(PACC [10]), by replacing all factors in the
right-hand side of Equation 5 with their “soft”
counterparts from Equations 2 and 6, i.e.,

p̂PACC
⊕ (D) =

p̂PCC
⊕ (D)− ˆfpr s

ˆtpr s − ˆfpr s

(7)

ACC and PACC define two simple linear adjust-
ments to the aggregated scores of general-purpose
classifiers.

We also investigate the use of a more recently
proposed adjustment method beased on deep
learning, called QuaNet [11]. QuaNet models a
neural non-linear adjustment by taking as input
all estimated prevalences from Equations 1, 2, 5,
7 (i.e., p̂CC

⊕ , p̂ACC
⊕ , p̂PCC

⊕ , p̂PACC
⊕ ), several statis-

tics (the ˆtprh, ˆfprh, ˆtpr s, ˆfpr s estimates from
Equations 4 and 6), the posterior probabilities
Pr(⊕|x) for each document x, and the document
vectors themselves. QuaNet relies on a recurrent
neural network to produce “quantification embed-
dings” (i.e., dense, multi-dimensional representa-
tions of the information relevant to quantification
observed from the input data), which are then
used to generate the final prevalence estimates.

EXPERIMENTS
We tested each of the 2 × 5 = 10 combina-
tions resulting from 2 approaches to generating
cross-lingual projections (SCL and DCI) and
5 approaches to performing quantification (CC,
PCC, ACC, PACC, and Quanet). The code
to replicate all these experiments is available
from GitHub1. Note that a dataset for senti-
ment classification is also a dataset for sentiment
quantification, since one can compute the true
class prevalences p⊕(D) and p	(D) by simply
counting the assigned labels.

System setup
We use the NUT package2 for SCL and the
PYDCI3 package [13] for DCI in order to
generate the vectorial representations of all
training and test documents. As the hard
classifiers, we stick to the ones used by the
original proponents of SCL and DCI, i.e., a
linear classifier trained via Elastic Net [15]
(implemented via the BOLT package4) for
SCL, and a linear classifier trained via SVMs
(implemented via the SCIKIT-LEARN package
[16]) for DCI. As the soft classifier we instead
use one trained via logistic regression (in its
SCIKIT-LEARN implementation) for both SCL
and DCI, since such classifiers are known to
return “well-calibrated” posterior probabilities.

1http://github.com/HLT-ISTI/cl-quant
2http://github.com/pprett/nut
3http://github.com/HLT-ISTI/pydci
4http://github.com/pprett/bolt
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The last point is fundamental for Equations
2, 6, 7 to return accurate values, since “well cal-
ibrated probabilities” is essentially a synonym of
“good-quality probabilities”. Posterior probabili-
ties Pr(c|x) are said to be well calibrated when,
given a sample D drawn from some population,

lim
|D|→∞

|{x ∈ c|Pr(c|x) = α}|
|{x ∈ D|Pr(c|x) = α}|

= α.

Intuitively, this property implies that, as the
size of the sample D goes to infinity, e.g., 90%
of the documents x ∈ D that are assigned a well
calibrated posterior probability Pr(c|x) = 0.9
belong to class c. Some classifiers (e.g., those
trained via logistic regression [17]) are known to
return well calibrated probabilities. The posterior
probabilities returned by some other classifiers
(e.g., those trained via naı̈ve Bayesian methods
[18]) are known instead to be not well calibrated.
Yet some other classifiers (e.g., those trained
via SVMs) do not return posterior probabilities,
but generic confidence scores. In these two last
cases it is possible to map the obtained posterior
probabilities / confidence scores into well cali-
brated posterior probabilities by means of some
“calibration” method [19], [17].

We set all the hyper-parameters in SCL (num-
ber m of pivots, minimum support frequency
φ for pivot candidates, dimensionality k of the
cross-lingual representation, and the Elastic Net
coefficient α) to (m = 450, φ = 30, k = 100,
α = 0.85), i.e., to the values found optimal in
previous literature [1] when optimizing for the
German book review task. Along with previous
work [13], in DCI we set the number of pivots
and minimum support to m = 450 and φ = 30.
The dimensionality is k = 450 by definition,
since in DCI each pivot corresponds to a dimen-
sion. In preliminary experiments we had used the
same value k = 450 both for DCI and SCL, on
grounds of “fairness”. The results for SCL were
slightly worse with respect to using k = 100; for
SCL we thus decided to stick to the k = 100
value originally used by the creators of SCL [1].
As the distributional correspondence function we
use cosine, since it is the best performer in
previously published experiments [13]. For each
setup we independently optimize the parameter C
(which controls the regularization strength in the
SVM and in the logistic regressor) via grid search

in the log space defined by C ∈ {10i}5i=−5, and
via 5-fold cross-validation. The classifiers with
the optimized hyper-parameters are then used in
a 10-fold cross-validation run on the training data
to produce the ˆtprh and ˆfprh estimates.

For the neural correction of QuaNet we use
its publicly available implementation linked from
the original paper5. We optimize the hyper-
parameters of QuaNet using the German book re-
view task (as done by Prettenhofer and Stein [1]);
we end up using 64 hidden units in the recurrent
cell of a two-layer stacked bidirectional LSTM,
1024 and 512 hidden units in the next-to-last
feed-forward layers, and a drop probability of 0.
We set the rest of the parameters to the same
values as in the original QuaNet paper [11].

Experimental setting

We use the Webis-CLS-10 dataset [1] as the
benchmark for our experiments. Webis-CLS-10
is a dataset originally proposed for cross-lingual
sentiment classification experiments, and consist-
ing of Amazon product reviews written in four
languages (English, German, French, Japanese)
and concerning three product domains (Books,
DVDs, Music). There are 2,000 training docu-
ments, 2,000 test documents, and a number of un-
labeled documents ranging from 9,000 to 50,000
for each combination of language and domain.
The examples of ⊕ and 	 (which indicate posi-
tive and negative sentiment, resp.) are perfectly
balanced (i.e., 50% each) in all sets (training,
test, unlabeled). Following a consolidated practice
in cross-lingual text classification, we always use
English as the source language. We use the pre-
processed version of the dataset6, where terms
correspond to uni-grams.

As the measures of quantification error we
use Absolute Error (AE), Relative Absolute Er-
ror (RAE), and the Kullback-Leibler Divergence

5http://github.com/HLT-ISTI/quanet
6http://uni-weimar.de/medien/webis/corpora/

corpus-webis-cls-10/cls-acl10-processed.tar.gz
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(KLD), defined as:

AE(p, p̂,D) =
1

|C|
∑
c∈C

|p̂c(D)− pc(D)| (8)

RAE(p, p̂,D) =
1

|C|
∑
c∈C

|p̂c(D)− pc(D)|
pc(D)

(9)

KLD(p, p̂,D) =
∑
c∈C

pc(D) log
pc(D)

p̂c(D)
(10)

since they are the most frequently used measures
for evaluating quantification error [20].

The evaluation of a quantifier cannot be car-
ried out on the basis on one single set of test
documents. The reason is that, while in text
classification experiments a test set consisting
of n documents enables the evaluation of n
different decision outcomes, in quantification the
same test set would only allow to validate one
single prevalence prediction. In order to allow
statistically significant comparisons, Forman [12]
proposed to run quantification experiments on
a set of test samples, randomly sampled from
the original set of test documents at different
prevalence levels. Along with Forman [12], as
the range of prevalences for the ⊕ class we use
{0.01, 0.05, 0.10, . . . , 0.90, 0.95, 0.99}. Similarly
to previous work [11], we generate 100 random
samples for each of the 21 prevalence levels, and
report quantification error as the average across
21× 100 = 2100 test samples. All samples con-
sist of 200 documents. For each target language
(German, French, Japanese) and product domain
(Books, DVD, Music) the samples are the same
across the different methods, which will enable
us to evaluate the statistical significance of the
differences in performance; to this aim, we rely
on the non-parametric Wilcoxon signed-rank test
on paired samples.

For each combination of target language and
product domain, Table 1 reports quantification
error (for each CLTQ method and for each evalu-
ation measure) as an average across the 2100 test
samples; we recall that English is always used as
the source language, so that, e.g., the “German
Books” experiment is about training on English
book reviews and testing on German book re-
views. Since QuaNet depends on a stochastic
optimization, Table 1 reports the average and
standard deviation across 10 runs.

Results
Overall, the results indicate that the combination
DCI+PACC is the best performer in terms of AE
and RAE, while DCI+QuaNet seems to behave
slightly better in terms of KLD. Given recent
theoretical results on the properties of evaluation
measures for quantification [20], that indicate that
AE and RAE are to be preferred to KLD, this
leads us to prefer DCI+PACC.

A substantial superiority of DCI over SCL,
as witnessed by the fact that, for each combi-
nation of evaluation measure, target language,
and domain, the best performer always uses DCI
and not SCL. This confirms previous results [2]
that showed the superiority of DCI over SCL in
monolingual sentiment classification contexts.

In both SCL and DCI the “hard” classifier
tends to work comparatively better than the “soft”
logistic regressor, as indicated by the fact that
CC tends to outperform PCC and ACC tends
(with some exceptions) to outperform PACC. As
expected, ACC (the “adjusted” version of CC)
performs substantially better than CC in all cases.
What comes as a surprise, though, is the fact
that the remarkable benefit PACC brings about in
DCI with respect to its unadjusted variant PCC,
is not consistently mirrored in the case of SCL
(where the effect of adjusting is instead harmful,
and especially so in terms of KLD).

The neural, non-linear adjustment of QuaNet,
when applied to DCI vectors, performs somehow
similarly to the best performer in several cases,
and actually delivers the lowest average KLD
error. That QuaNet does not perform as well with
SCL can be explained by two facts (which are not
independent of each other), i.e., the importance
of the estimated posterior probabilities within
QuaNet, and the suboptimal ability (as shown
by the PCC and PACC results) in delivering
accurate posterior probabilities for SCL vectors
that the logistic regressor has shown.

CONCLUSION
The experiments we have performed show that
structural correspondence learning (SCL) and
distributional correspondence indexing (DCI),
two previously proposed methods for cross-
lingual text classification, can effectively be used
in cross-lingual text quantification, a task that
had never been tackled before in the literature.
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Table 1. Cross-lingual sentiment quantification results for Webis-CLS-10. Boldface indicates the best result. Superscripts
† and †† denote the method (if any) whose score is not statistically significantly different from the best one at α = 0.05

(†) or at α = 0.005 (††).
Target SCL DCI

Language Domain CC ACC PCC PACC QuaNet CC ACC PCC PACC QuaNet

A
E

German Books 0.092 0.040 0.237 0.375 0.203 (±0.006) 0.090 0.037 0.119 0.027 0.030 (±0.002)
German DVDs 0.104 0.045 0.221 0.331 0.178 (±0.009) 0.086 0.030 0.147 0.028 0.030 (±0.003)††
German Music 0.097 0.037†† 0.151 0.101 0.072 (±0.007) 0.078 0.037†† 0.109 0.039†† 0.030 (±0.002)
French Books 0.098 0.037 0.202 0.288 0.151 (±0.007) 0.098 0.038 0.122 0.025 0.036 (±0.003)
French DVDs 0.110 0.056 0.174 0.113 0.072 (±0.002) 0.091 0.037 0.117 0.027 0.045 (±0.005)
French Music 0.119 0.060 0.178 0.090 0.072 (±0.001) 0.074 0.030 0.160 0.024 0.047 (±0.010)

Japanese Books 0.127 0.072 0.194 0.124 0.095 (±0.002) 0.117 0.060 0.174 0.064 0.073 (±0.003)
Japanese DVDs 0.131 0.079 0.329 0.485 0.270 (±0.005) 0.104 0.045 0.128 0.037 0.058 (±0.006)
Japanese Music 0.118 0.059 0.242 0.377 0.228 (±0.007) 0.092 0.029 0.161 0.027 0.044 (±0.009)

Average 0.111 0.054 0.214 0.254 0.149 0.092 0.038 0.138 0.033 0.044

R
A
E

German Books 0.888 0.164 0.878 0.807 0.513 (±0.015) 1.135 0.246 1.411 0.136 0.248 (±0.034)
German DVDs 1.086 0.267 1.047 0.733 0.428 (±0.031) 1.070 0.223 1.709 0.144 0.234 (±0.020)††
German Music 1.056 0.194† 1.364 0.268 0.216 (±0.011) 0.947 0.194†† 1.310 0.153 0.245 (±0.022)††
French Books 1.021 0.313 1.041 0.666 0.383 (±0.025) 1.227 0.407 1.426 0.159 0.330 (±0.026)
French DVDs 1.307 0.682 1.642 0.475 0.543 (±0.019) 0.938 0.176 1.284 0.144 0.223 (±0.016)
French Music 1.310 0.496 2.099 1.181 0.817 (±0.026) 0.834 0.138 1.803 0.208 0.276 (±0.039)†

Japanese Books 1.423 0.781 2.287 1.572 1.122 (±0.026) 1.196 0.450 1.935 0.639 0.570 (±0.032)
Japanese DVDs 1.392 0.785 0.833 0.947 0.557 (±0.012) 1.097 0.292 1.380 0.213 0.350 (±0.021)
Japanese Music 1.232 0.304 0.910 0.806 0.527 (±0.016) 0.973 0.175 1.800 0.198† 0.293 (±0.034)

Average 1.191 0.443 1.345 0.828 0.567 1.046 0.256 1.562 0.222 0.308

K
L
D

German Books 0.041 0.016 0.194 1.778 0.274 (±0.043) 0.040 0.032 0.062 0.028 0.007 (±0.001)
German DVDs 0.050 0.013 0.172 0.987 0.139 (±0.034) 0.038 0.019 0.086 0.028 0.007 (±0.001)
German Music 0.045 0.017†† 0.090 0.062 0.027 (±0.005) 0.032 0.046 0.054 0.072 0.008 (±0.001)
French Books 0.046 0.010†† 0.146 0.748 0.115 (±0.024) 0.046 0.014 0.064 0.014 0.010 (±0.001)
French DVDs 0.055 0.019 0.111 0.055 0.029 (±0.001) 0.040 0.012 0.060 0.008 0.012 (±0.002)
French Music 0.062 0.021 0.114 0.040 0.028 (±0.000) 0.030 0.040 0.097 0.007 0.014 (±0.004)

Japanese Books 0.068 0.028 0.132 0.065 0.043 (±0.001) 0.060 0.020 0.110 0.024 0.029 (±0.002)
Japanese DVDs 0.071 0.033 0.376 5.133 0.250 (±0.013) 0.051 0.014 0.069 0.011 0.020 (±0.003)
Japanese Music 0.061 0.022 0.202 1.629 0.234 (±0.024) 0.042 0.011 0.098 0.009 0.013 (±0.004)

Average 0.055 0.020 0.171 1.166 0.127 0.042 0.023 0.078 0.022 0.013

The tested methods yield quantification pre-
dictions that are fairly close to the true preva-
lence; in terms of absolute error (arguably
the most easy-to-interpret error criterion), and
on average, the class prevalences predicted by
DCI+PACC differ from the true prevalences by a
margin of 3.3% on average, while this difference
is 5.4% for SCL+ACC.

These results are encouraging, especially if
we consider the fact that the quantifier is trained
on a language different from the one on which
quantification is performed (for which no training
data are assumed to exist), and that a range of
true prevalences different (and even extremely
different) from the ones of the training set are
tested upon.

Note also that these results are a further
confirmation of the fact that, when our interest
in automatically labeled data is at the aggregate
level only (and not at the individual level), using
“real” quantification methods (instead of standard
classification methods in a “classify and count”
fashion) is the way to go. To witness, in terms of
absolute error the use of DCI+PACC allows to
cut down quantification error to 3.3% on average,

a substantial improvement with respect to the
9.2% on average obtained by just using DCI with
a “classify and count” approach.

The combination of transfer learning (of
which cross-lingual transfer is an instance) with
quantification is an interesting task in general,
that should prompt a body of dedicated research.
We believe end-to-end approaches for cross-
lingual quantification, not necessarily relying on
classification as an intermediate step, would be
worth exploring. Likewise, a natural extension of
this work would be to explore applications of
transfer learning to sentiment quantification dif-
ferent from the cross-lingual one, such as cross-
domain sentiment quantification. Note also that,
while this paper concentrates on a very narrow
aspect of sentiment analysis (namely, Positive-
Negative polarity detection), approaches such as
the ones championed here can be in principle
extended to deal with other labeling tasks in
sentiment analysis, such as finer-grained polar-
ity detection (e.g., using ordinal scales) or joint
topic-sentiment detection.
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